dangvantuan commited on
Commit
e3bd161
1 Parent(s): adae6f0

Upload 2 files

Browse files
Files changed (2) hide show
  1. configuration.py +114 -0
  2. modeling.py +1319 -0
configuration.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # limitations under the License.
2
+ """ Vietnamese model configuration"""
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class VietnameseConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`VietnameseModel`] or a [`TFVietnameseModel`]. It is used to
12
+ instantiate a Vietnamese model according to the specified arguments, defining the model architecture. Instantiating a
13
+ configuration with the defaults will yield a similar configuration to that of the Vietnamese
14
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
15
+ documentation from [`PretrainedConfig`] for more information.
16
+ Args:
17
+ vocab_size (`int`, *optional*, defaults to 30522):
18
+ Vocabulary size of the Vietnamese model. Defines the number of different tokens that can be represented by the
19
+ `inputs_ids` passed when calling [`VietnameseModel`] or [`TFVietnameseModel`].
20
+ hidden_size (`int`, *optional*, defaults to 768):
21
+ Dimensionality of the encoder layers and the pooler layer.
22
+ num_hidden_layers (`int`, *optional*, defaults to 12):
23
+ Number of hidden layers in the Transformer encoder.
24
+ num_attention_heads (`int`, *optional*, defaults to 12):
25
+ Number of attention heads for each attention layer in the Transformer encoder.
26
+ intermediate_size (`int`, *optional*, defaults to 3072):
27
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
28
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
29
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
30
+ `"relu"`, `"silu"` and `"gelu_Vietnamese"` are supported.
31
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
32
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
33
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
34
+ The dropout ratio for the attention probabilities.
35
+ max_position_embeddings (`int`, *optional*, defaults to 512):
36
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
37
+ just in case (e.g., 512 or 1024 or 2048).
38
+ type_vocab_size (`int`, *optional*, defaults to 2):
39
+ The vocabulary size of the `token_type_ids` passed when calling [`VietnameseModel`] or [`TFVietnameseModel`].
40
+ initializer_range (`float`, *optional*, defaults to 0.02):
41
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
42
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
43
+ The epsilon used by the layer normalization layers.
44
+ position_embedding_type (`str`, *optional*, defaults to `"rope"`):
45
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`.
46
+ rope_theta (`float`, *optional*, defaults to 10000.0):
47
+ The base period of the RoPE embeddings.
48
+ rope_scaling (`Dict`, *optional*):
49
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
50
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
51
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
52
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
53
+ these scaling strategies behave:
54
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
55
+ experimental feature, subject to breaking API changes in future versions.
56
+ classifier_dropout (`float`, *optional*):
57
+ The dropout ratio for the classification head.
58
+ Examples:
59
+ """
60
+
61
+ model_type = "Vietnamese"
62
+
63
+ def __init__(
64
+ self,
65
+ vocab_size=30528,
66
+ hidden_size=768,
67
+ num_hidden_layers=12,
68
+ num_attention_heads=12,
69
+ intermediate_size=3072,
70
+ hidden_act="gelu",
71
+ hidden_dropout_prob=0.1,
72
+ attention_probs_dropout_prob=0.0,
73
+ max_position_embeddings=2048,
74
+ type_vocab_size=1,
75
+ initializer_range=0.02,
76
+ layer_norm_type='layer_norm',
77
+ layer_norm_eps=1e-12,
78
+ # pad_token_id=0,
79
+ position_embedding_type="rope",
80
+ rope_theta=10000.0,
81
+ rope_scaling=None,
82
+ classifier_dropout=None,
83
+ pack_qkv=True,
84
+ unpad_inputs=False,
85
+ use_memory_efficient_attention=False,
86
+ logn_attention_scale=False,
87
+ logn_attention_clip1=False,
88
+ **kwargs,
89
+ ):
90
+ super().__init__(**kwargs)
91
+
92
+ self.vocab_size = vocab_size
93
+ self.hidden_size = hidden_size
94
+ self.num_hidden_layers = num_hidden_layers
95
+ self.num_attention_heads = num_attention_heads
96
+ self.hidden_act = hidden_act
97
+ self.intermediate_size = intermediate_size
98
+ self.hidden_dropout_prob = hidden_dropout_prob
99
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
100
+ self.max_position_embeddings = max_position_embeddings
101
+ self.type_vocab_size = type_vocab_size
102
+ self.initializer_range = initializer_range
103
+ self.layer_norm_type = layer_norm_type
104
+ self.layer_norm_eps = layer_norm_eps
105
+ self.position_embedding_type = position_embedding_type
106
+ self.rope_theta = rope_theta
107
+ self.rope_scaling = rope_scaling
108
+ self.classifier_dropout = classifier_dropout
109
+
110
+ self.pack_qkv = pack_qkv
111
+ self.unpad_inputs = unpad_inputs
112
+ self.use_memory_efficient_attention = use_memory_efficient_attention
113
+ self.logn_attention_scale = logn_attention_scale
114
+ self.logn_attention_clip1 = logn_attention_clip1
modeling.py ADDED
@@ -0,0 +1,1319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch Vietnamese model."""
2
+ import math
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.utils.checkpoint
8
+ from torch import nn
9
+
10
+ from transformers.activations import ACT2FN
11
+ from transformers.modeling_outputs import (
12
+ BaseModelOutput,
13
+ BaseModelOutputWithPooling,
14
+ MaskedLMOutput,
15
+ MultipleChoiceModelOutput,
16
+ QuestionAnsweringModelOutput,
17
+ SequenceClassifierOutput,
18
+ ModelOutput,
19
+ )
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import logging
22
+
23
+ try:
24
+ import xformers.ops as xops
25
+ except ImportError as e:
26
+ xops = None
27
+
28
+ from .configuration import VietnameseConfig
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
35
+ # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
36
+ class IndexFirstAxis(torch.autograd.Function):
37
+ @staticmethod
38
+ def forward(ctx, input, indices):
39
+ ctx.save_for_backward(indices)
40
+ assert input.ndim >= 2
41
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
42
+ second_dim = other_shape.numel()
43
+ return torch.gather(
44
+ input.view(ctx.first_axis_dim, second_dim),
45
+ 0,
46
+ indices.unsqueeze(-1).expand(indices.size(0), second_dim)
47
+ ).reshape(-1, *other_shape)
48
+
49
+ @staticmethod
50
+ def backward(ctx, grad_output):
51
+ (indices,) = ctx.saved_tensors
52
+ assert grad_output.ndim >= 2
53
+ other_shape = grad_output.shape[1:]
54
+ grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
55
+ grad_input = torch.zeros(
56
+ [ctx.first_axis_dim, grad_output.shape[1]],
57
+ device=grad_output.device,
58
+ dtype=grad_output.dtype,
59
+ )
60
+ grad_input.scatter_(
61
+ 0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
62
+ )
63
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
64
+
65
+
66
+ index_first_axis = IndexFirstAxis.apply
67
+
68
+
69
+ def unpad_input(hidden_states, attention_mask=None, indices=None):
70
+ """
71
+ Arguments:
72
+ hidden_states: (batch, seqlen, ...)
73
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
74
+ indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
75
+ Return:
76
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
77
+ """
78
+ if indices is None:
79
+ assert attention_mask is not None
80
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
81
+
82
+ hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
83
+ return index_first_axis(hidden_states, indices)
84
+
85
+
86
+ class IndexPutFirstAxis(torch.autograd.Function):
87
+ @staticmethod
88
+ def forward(
89
+ ctx,
90
+ values: torch.Tensor,
91
+ indices: torch.Tensor,
92
+ first_axis_dim
93
+ ) -> torch.Tensor:
94
+ ctx.save_for_backward(indices)
95
+ assert indices.ndim == 1
96
+ assert values.ndim >= 2
97
+ output = torch.zeros(
98
+ first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
99
+ )
100
+ output[indices] = values
101
+ return output
102
+
103
+ @staticmethod
104
+ def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
105
+ indices, = ctx.saved_tensors
106
+ grad_values = grad_output[indices]
107
+ return grad_values, None, None
108
+
109
+
110
+ index_put_first_axis = IndexPutFirstAxis.apply
111
+
112
+
113
+ def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
114
+ """Add padding to sequences.
115
+ Arguments:
116
+ inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
117
+ indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
118
+ batch: int batch_size
119
+ seqlen: int max sequence length
120
+ Returns:
121
+ inputs: (batch, seqlen, ...)
122
+ """
123
+ output = index_put_first_axis(inputs, indices, batch * seqlen)
124
+ return output.view(batch, seqlen, *inputs.shape[1:])
125
+
126
+
127
+ def rotate_half(x):
128
+ """Rotates half the hidden dims of the input."""
129
+ x1 = x[..., : x.shape[-1] // 2]
130
+ x2 = x[..., x.shape[-1] // 2 :]
131
+ return torch.cat((-x2, x1), dim=-1)
132
+
133
+
134
+ def apply_rotary_pos_emb(q, k, cos, sin):
135
+ """Applies Rotary Position Embedding to the query and key tensors.
136
+ Args:
137
+ q (`torch.Tensor`): The query tensor.
138
+ k (`torch.Tensor`): The key tensor.
139
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
140
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
141
+ Returns:
142
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
143
+ """
144
+ cos, sin = cos.to(q.dtype), sin.to(q.dtype)
145
+ q_embed = (q * cos) + (rotate_half(q) * sin)
146
+ k_embed = (k * cos) + (rotate_half(k) * sin)
147
+ return q_embed, k_embed
148
+
149
+
150
+ class RotaryEmbedding(torch.nn.Module):
151
+ def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
152
+ super().__init__()
153
+
154
+ self.dim = dim
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.base = base
157
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
158
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
159
+
160
+ self._set_cos_sin_cache(
161
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
162
+ )
163
+
164
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
165
+ self.max_seq_len_cached = seq_len
166
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
167
+
168
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
169
+ emb = torch.cat((freqs, freqs), dim=-1)
170
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
171
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
172
+
173
+ def forward(self, x, seq_len=None):
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ class NTKScalingRotaryEmbedding(RotaryEmbedding):
184
+ """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
185
+
186
+ def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
187
+ self.scaling_factor = scaling_factor
188
+ self.mixed_b = mixed_b
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+ max_position_embeddings = max_position_embeddings * self.scaling_factor
191
+ self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
192
+
193
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
194
+ self.max_seq_len_cached = seq_len
195
+
196
+ if seq_len > self.max_position_embeddings:
197
+ base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
199
+
200
+ if self.mixed_b is None:
201
+ inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim)
202
+ else:
203
+ a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b
204
+ lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp()
205
+ inv_freq = inv_freq / lambda_1_m
206
+
207
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
208
+
209
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
210
+
211
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
212
+ emb = torch.cat((freqs, freqs), dim=-1)
213
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
214
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
215
+
216
+
217
+ class RMSNorm(nn.Module):
218
+ def __init__(self, hidden_size, eps=1e-6):
219
+ """
220
+ RMSNorm is equivalent to T5LayerNorm
221
+ """
222
+ super().__init__()
223
+ self.weight = nn.Parameter(torch.ones(hidden_size))
224
+ self.variance_epsilon = eps
225
+
226
+ def forward(self, hidden_states):
227
+ input_dtype = hidden_states.dtype
228
+ hidden_states = hidden_states.to(torch.float32)
229
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
230
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
231
+ return self.weight * hidden_states.to(input_dtype)
232
+
233
+
234
+ LAYER_NORM = {
235
+ 'layer_norm': nn.LayerNorm,
236
+ 'rms_norm': RMSNorm
237
+ }
238
+
239
+
240
+ class VietnameseEmbeddings(nn.Module):
241
+ """
242
+ Embedding and Unpadding.
243
+ """
244
+
245
+ def __init__(self, config: VietnameseConfig):
246
+ super().__init__()
247
+ self.padding_idx = config.pad_token_id
248
+ self.word_embeddings = nn.Embedding(
249
+ config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
250
+ )
251
+
252
+ self.position_embedding_type = config.position_embedding_type
253
+ if self.position_embedding_type == 'absolute':
254
+ self.position_embeddings = nn.Embedding(
255
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
256
+ )
257
+ elif self.position_embedding_type == 'rope':
258
+ self._init_rope(config)
259
+ else:
260
+ raise ValueError
261
+
262
+ self.type_vocab_size = config.type_vocab_size
263
+ if self.type_vocab_size > 0:
264
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
265
+
266
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
267
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
268
+ self.register_buffer(
269
+ "position_ids", torch.arange(config.max_position_embeddings), persistent=False
270
+ )
271
+
272
+ def _init_rope(self, config):
273
+ kwargs = dict(
274
+ dim=int(config.hidden_size / config.num_attention_heads),
275
+ max_position_embeddings=config.max_position_embeddings,
276
+ base=config.rope_theta
277
+ )
278
+ if config.rope_scaling is None:
279
+ self.rotary_emb = RotaryEmbedding(**kwargs)
280
+ else:
281
+ kwargs.update(scaling_factor=config.rope_scaling["factor"])
282
+ scaling_type = config.rope_scaling["type"]
283
+ if scaling_type == 'ntk':
284
+ kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
285
+ self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
286
+ else:
287
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
288
+
289
+ def forward(
290
+ self,
291
+ unpad_inputs: bool,
292
+ input_ids: Optional[torch.Tensor] = None,
293
+ attention_mask: Optional[torch.Tensor] = None,
294
+ length: Optional[List[int]] = None,
295
+ token_type_ids: Optional[torch.Tensor] = None,
296
+ position_ids: Optional[torch.Tensor] = None,
297
+ inputs_embeds: Optional[torch.Tensor] = None,
298
+ ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
299
+ if inputs_embeds is None:
300
+ device, input_shape = input_ids.device, input_ids.shape
301
+ else:
302
+ device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
303
+ batch_size, seq_length = input_shape
304
+
305
+ if attention_mask is None:
306
+ attention_mask = torch.ones(input_shape, device=device)
307
+ if length is not None:
308
+ for i, l in enumerate(length):
309
+ attention_mask[i, l:] = 0
310
+
311
+ if unpad_inputs:
312
+ attention_mask_bool = attention_mask.bool()
313
+ if length is None:
314
+ length = attention_mask.sum(-1).tolist()
315
+
316
+ if inputs_embeds is None:
317
+ if unpad_inputs:
318
+ input_ids = input_ids[attention_mask_bool].unsqueeze(0)
319
+ inputs_embeds = self.word_embeddings(input_ids)
320
+ else:
321
+ if unpad_inputs:
322
+ inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
323
+ embeddings = inputs_embeds
324
+
325
+ if position_ids is None:
326
+ if seq_length > self.position_ids.size(0):
327
+ self.register_buffer(
328
+ "position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
329
+ )
330
+ if unpad_inputs:
331
+ position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
332
+ else:
333
+ position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
334
+ elif unpad_inputs:
335
+ position_ids = position_ids[attention_mask_bool].unsqueeze(0)
336
+
337
+ if self.position_embedding_type == 'rope':
338
+ rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
339
+ rope_cos = rope_cos[position_ids].unsqueeze(2)
340
+ rope_sin = rope_sin[position_ids].unsqueeze(2)
341
+ rope_embeds = rope_cos, rope_sin
342
+ else:
343
+ rope_embeds = None
344
+
345
+ if self.type_vocab_size > 0:
346
+ if token_type_ids is None:
347
+ token_type_ids = position_ids.mul(0)
348
+ else:
349
+ if self.type_vocab_size < 2:
350
+ token_type_ids.mul_(0)
351
+ if unpad_inputs:
352
+ token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
353
+
354
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
355
+ embeddings = embeddings + token_type_embeddings
356
+
357
+ if self.position_embedding_type == "absolute":
358
+ position_embeddings = self.position_embeddings(position_ids)
359
+ embeddings = embeddings + position_embeddings
360
+
361
+ embeddings = self.LayerNorm(embeddings)
362
+ embeddings = self.dropout(embeddings)
363
+
364
+ return embeddings, attention_mask, rope_embeds, length
365
+
366
+
367
+ class VietnameseAttention(nn.Module):
368
+ def __init__(self, config: VietnameseConfig, pack_qkv=None, use_memory_efficient_attention=None):
369
+ super().__init__()
370
+ self.config = config
371
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
372
+ raise ValueError(
373
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
374
+ f"heads ({config.num_attention_heads})"
375
+ )
376
+
377
+ self.hidden_size = config.hidden_size
378
+ self.num_attention_heads = config.num_attention_heads
379
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
380
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
381
+
382
+ if pack_qkv is None:
383
+ pack_qkv = config.pack_qkv
384
+ self.pack_qkv = pack_qkv
385
+
386
+ if self.pack_qkv:
387
+ self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
388
+ else:
389
+ self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
390
+ self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
391
+ self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
392
+
393
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
394
+ self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
395
+
396
+ if use_memory_efficient_attention is None:
397
+ use_memory_efficient_attention = self.config.use_memory_efficient_attention
398
+ self.use_memory_efficient_attention = use_memory_efficient_attention
399
+ self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
400
+ if self.use_memory_efficient_attention:
401
+ assert self.memory_efficient_attention is not None, 'please install xformers'
402
+
403
+ def forward(
404
+ self,
405
+ hidden_states: torch.Tensor,
406
+ attention_bias: torch.FloatTensor,
407
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
408
+ padding_inputs: Optional[Tuple] = None,
409
+ attention_scale: Optional[torch.FloatTensor] = None,
410
+ head_mask: Optional[torch.FloatTensor] = None,
411
+ output_attentions: Optional[bool] = False,
412
+ qkv_inputs: Optional[Tuple] = None,
413
+ ) -> Tuple[torch.Tensor, ...]:
414
+ shape_hd = (self.num_attention_heads, self.attention_head_size)
415
+ if self.pack_qkv and qkv_inputs is None:
416
+ qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
417
+ else:
418
+ if qkv_inputs is None:
419
+ qkv_inputs = (hidden_states, hidden_states, hidden_states)
420
+ qkv_pack = [
421
+ getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
422
+ ]
423
+ query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
424
+
425
+ if self.config.position_embedding_type == 'rope':
426
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
427
+
428
+ dtype = query_states.dtype
429
+
430
+ if self.config.logn_attention_scale and attention_scale is not None:
431
+ query_states = query_states * attention_scale.to(dtype)
432
+
433
+ if padding_inputs is not None:
434
+ query_states = pad_input(query_states.squeeze(), *padding_inputs)
435
+ key_states = pad_input(key_states.squeeze(), *padding_inputs)
436
+ value_states = pad_input(value_states.squeeze(), *padding_inputs)
437
+
438
+ if self.use_memory_efficient_attention:
439
+ assert self.memory_efficient_attention is not None, "xformers is not loaded"
440
+ assert output_attentions is False, "memory_efficient_attention do not output attentions"
441
+ assert head_mask is None, "Not support yet"
442
+ attention_probs = None
443
+ if torch.is_tensor(attention_bias):
444
+ attention_bias = attention_bias.to(dtype)
445
+ context_layer = self.memory_efficient_attention(
446
+ query_states,
447
+ key_states,
448
+ value_states,
449
+ attn_bias=attention_bias,
450
+ p=self.dropout.p
451
+ )
452
+ else:
453
+ if output_attentions and isinstance(self, VietnameseSdpaAttention):
454
+ raise RuntimeError("SDPA do not output attentions")
455
+ context_layer, attention_probs = self._attention(
456
+ query_states, key_states, value_states, attention_bias, head_mask
457
+ )
458
+
459
+ if padding_inputs is not None:
460
+ context_layer = unpad_input(context_layer, indices=padding_inputs[0])
461
+
462
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
463
+ context_layer = context_layer.view(new_context_layer_shape)
464
+
465
+ attn_output = self.o_proj(context_layer)
466
+
467
+ outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
468
+ return outputs
469
+
470
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
471
+ query_states = query_states.transpose(1, 2)
472
+ key_states = key_states.transpose(1, 2)
473
+ value_states = value_states.transpose(1, 2)
474
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
475
+
476
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
477
+ if attention_bias is not None:
478
+ attention_scores = attention_scores + attention_bias
479
+
480
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
481
+
482
+ if self.dropout.p > 0:
483
+ attention_probs = self.dropout(attention_probs)
484
+
485
+ if head_mask is not None:
486
+ attention_probs = attention_probs * head_mask
487
+
488
+ context_layer = torch.matmul(attention_probs, value_states)
489
+
490
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
491
+ return context_layer, attention_probs
492
+
493
+
494
+ class VietnameseSdpaAttention(VietnameseAttention):
495
+ """
496
+ Vietnamese attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
497
+ `VietnameseAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
498
+ SDPA API.
499
+ """
500
+ def __init__(self, config: VietnameseConfig, **kwargs):
501
+ super().__init__(config, **kwargs)
502
+
503
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
504
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
505
+ query_states.transpose(1, 2),
506
+ key_states.transpose(1, 2),
507
+ value_states.transpose(1, 2),
508
+ attn_mask=attention_bias,
509
+ dropout_p=self.dropout.p if self.training else 0.0,
510
+ )
511
+ attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
512
+ return attn_output, None
513
+
514
+
515
+ Vietnamese_ATTENTION_CLASSES = {
516
+ "eager": VietnameseAttention,
517
+ "sdpa": VietnameseSdpaAttention,
518
+ }
519
+
520
+
521
+ class VietnameseGatedMLP(nn.Module):
522
+ """
523
+ GLU Variants Improve Transformer.
524
+ """
525
+
526
+ def __init__(self, config: VietnameseConfig):
527
+ super().__init__()
528
+ self.intermediate_size = config.intermediate_size
529
+ self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
530
+ self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
531
+ self.act_fn = ACT2FN[config.hidden_act]
532
+ if config.hidden_dropout_prob > 0:
533
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
534
+ else:
535
+ self.hidden_dropout = None
536
+
537
+ def forward(self, hidden_states):
538
+ up_gate = self.up_gate_proj(hidden_states)
539
+ up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
540
+ gate = self.act_fn(gate)
541
+ gated_states = gate * up_states
542
+ if self.hidden_dropout is not None:
543
+ gated_states = self.hidden_dropout(gated_states)
544
+ down_states = self.down_proj(gated_states)
545
+ return down_states
546
+
547
+
548
+ class VietnameseLayer(nn.Module):
549
+ def __init__(
550
+ self,
551
+ config: VietnameseConfig,
552
+ pack_qkv=None,
553
+ use_memory_efficient_attention=None,
554
+ attn_implementation=None
555
+ ):
556
+ super().__init__()
557
+ if attn_implementation is None:
558
+ attn_implementation = config._attn_implementation
559
+ if use_memory_efficient_attention is None:
560
+ use_memory_efficient_attention = config.use_memory_efficient_attention
561
+ if use_memory_efficient_attention:
562
+ if attn_implementation != 'eager':
563
+ logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
564
+ attn_implementation = 'eager'
565
+ self.attention = Vietnamese_ATTENTION_CLASSES[attn_implementation](
566
+ config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
567
+ )
568
+ self.mlp = VietnameseGatedMLP(config)
569
+
570
+ ln_class = LAYER_NORM[config.layer_norm_type]
571
+ self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
572
+ self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
573
+
574
+ if config.hidden_dropout_prob > 0:
575
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
576
+ else:
577
+ self.hidden_dropout = None
578
+
579
+ def forward(
580
+ self,
581
+ hidden_states: torch.Tensor,
582
+ attention_bias: torch.FloatTensor,
583
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
584
+ padding_inputs: Optional[Tuple] = None,
585
+ attention_scale: Optional[torch.FloatTensor] = None,
586
+ subset_indices: Optional[torch.LongTensor] = None,
587
+ head_mask: Optional[torch.FloatTensor] = None,
588
+ output_attentions: Optional[bool] = False,
589
+ qkv_inputs: Optional[Tuple] = None,
590
+ ) -> Tuple[torch.Tensor, ...]:
591
+ residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
592
+ attention_outputs = self.attention(
593
+ hidden_states,
594
+ attention_bias,
595
+ rope_embeds,
596
+ padding_inputs,
597
+ attention_scale,
598
+ head_mask,
599
+ output_attentions=output_attentions,
600
+ qkv_inputs=qkv_inputs,
601
+ )
602
+ hidden_states = attention_outputs[0]
603
+ if self.hidden_dropout is not None:
604
+ hidden_states = self.hidden_dropout(hidden_states)
605
+ hidden_states = residual + hidden_states
606
+
607
+ if subset_indices is not None:
608
+ hidden_states = hidden_states[subset_indices]
609
+
610
+ hidden_states = self.attn_ln(hidden_states)
611
+
612
+ residual = hidden_states
613
+ hidden_states = self.mlp(hidden_states)
614
+ if self.hidden_dropout is not None:
615
+ hidden_states = self.hidden_dropout(hidden_states)
616
+ hidden_states = residual + hidden_states
617
+ hidden_states = self.mlp_ln(hidden_states)
618
+
619
+ outputs = (hidden_states,) + attention_outputs[1:]
620
+ return outputs
621
+
622
+
623
+ class VietnameseEncoder(nn.Module):
624
+ def __init__(self, config):
625
+ super().__init__()
626
+ self.config = config
627
+ self.layer = nn.ModuleList([VietnameseLayer(config) for _ in range(config.num_hidden_layers)])
628
+ self.gradient_checkpointing = False
629
+
630
+ def forward(
631
+ self,
632
+ hidden_states: torch.Tensor,
633
+ attention_bias: Optional[torch.FloatTensor] = None,
634
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
635
+ padding_inputs: Optional[Tuple] = None,
636
+ attention_scale: Optional[torch.FloatTensor] = None,
637
+ subset_indices: Optional[torch.LongTensor] = None,
638
+ head_mask: Optional[torch.FloatTensor] = None,
639
+ output_attentions: Optional[bool] = False,
640
+ output_hidden_states: Optional[bool] = False,
641
+ return_dict: Optional[bool] = True,
642
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
643
+ all_hidden_states = () if output_hidden_states else None
644
+ all_self_attentions = () if output_attentions else None
645
+
646
+ for i, layer_module in enumerate(self.layer):
647
+ if output_hidden_states:
648
+ all_hidden_states = all_hidden_states + (hidden_states,)
649
+
650
+ if i >= len(self.layer) - 1:
651
+ layer_subset_indices = subset_indices
652
+ else:
653
+ layer_subset_indices = None
654
+
655
+ layer_head_mask = head_mask[i] if head_mask is not None else None
656
+
657
+ if self.gradient_checkpointing and self.training:
658
+ layer_outputs = self._gradient_checkpointing_func(
659
+ layer_module.__call__,
660
+ hidden_states,
661
+ attention_bias,
662
+ rope_embeds,
663
+ padding_inputs,
664
+ attention_scale,
665
+ layer_subset_indices,
666
+ layer_head_mask,
667
+ )
668
+ else:
669
+ layer_outputs = layer_module(
670
+ hidden_states,
671
+ attention_bias,
672
+ rope_embeds,
673
+ padding_inputs,
674
+ attention_scale,
675
+ layer_subset_indices,
676
+ layer_head_mask,
677
+ output_attentions,
678
+ )
679
+
680
+ hidden_states = layer_outputs[0]
681
+ if output_attentions:
682
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
683
+
684
+ if output_hidden_states:
685
+ all_hidden_states = all_hidden_states + (hidden_states,)
686
+
687
+ if not return_dict:
688
+ return tuple(
689
+ v
690
+ for v in [
691
+ hidden_states,
692
+ all_hidden_states,
693
+ all_self_attentions,
694
+ ]
695
+ if v is not None
696
+ )
697
+ return BaseModelOutput(
698
+ last_hidden_state=hidden_states,
699
+ hidden_states=all_hidden_states,
700
+ attentions=all_self_attentions,
701
+ )
702
+
703
+
704
+ class VietnamesePooler(nn.Module):
705
+ def __init__(self, config):
706
+ super().__init__()
707
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
708
+ self.activation = nn.Tanh()
709
+
710
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
711
+ first_token_tensor = hidden_states[:, 0]
712
+ pooled_output = self.dense(first_token_tensor)
713
+ pooled_output = self.activation(pooled_output)
714
+ return pooled_output
715
+
716
+
717
+ class VietnamesePreTrainedModel(PreTrainedModel):
718
+ """
719
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
720
+ models.
721
+ """
722
+
723
+ config_class = VietnameseConfig
724
+ base_model_prefix = "Vietnamese"
725
+ supports_gradient_checkpointing = True
726
+ _supports_sdpa = True
727
+
728
+ def _init_weights(self, module):
729
+ """Initialize the weights"""
730
+ if isinstance(module, nn.Linear):
731
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
732
+ if module.bias is not None:
733
+ module.bias.data.zero_()
734
+ elif isinstance(module, nn.Embedding):
735
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
736
+ if module.padding_idx is not None:
737
+ module.weight.data[module.padding_idx].zero_()
738
+ elif isinstance(module, nn.LayerNorm):
739
+ module.bias.data.zero_()
740
+ module.weight.data.fill_(1.0)
741
+
742
+
743
+ class VietnameseModel(VietnamesePreTrainedModel):
744
+ """
745
+ The bare Vietnamese Model transformer outputting raw hidden-states without any specific head on top.
746
+ """
747
+
748
+ def __init__(self, config: VietnameseConfig, add_pooling_layer=False):
749
+ super().__init__(config)
750
+ self.config = config
751
+
752
+ self.embeddings = VietnameseEmbeddings(config)
753
+ self.encoder = VietnameseEncoder(config)
754
+
755
+ self.pooler = VietnamesePooler(config) if add_pooling_layer else None
756
+
757
+ self.post_init()
758
+
759
+ def get_input_embeddings(self):
760
+ return self.embeddings.word_embeddings
761
+
762
+ def set_input_embeddings(self, value):
763
+ self.embeddings.word_embeddings = value
764
+
765
+ def forward(
766
+ self,
767
+ input_ids: Optional[torch.Tensor] = None,
768
+ attention_mask: Optional[torch.Tensor] = None,
769
+ length: Optional[List[int]] = None,
770
+ subset_indices: Optional[torch.LongTensor] = None,
771
+ token_type_ids: Optional[torch.Tensor] = None,
772
+ position_ids: Optional[torch.Tensor] = None,
773
+ head_mask: Optional[torch.Tensor] = None,
774
+ inputs_embeds: Optional[torch.Tensor] = None,
775
+ output_attentions: Optional[bool] = None,
776
+ output_hidden_states: Optional[bool] = None,
777
+ return_dict: Optional[bool] = None,
778
+ unpad_inputs: Optional[bool] = None,
779
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
780
+ r"""
781
+ length (`list` of length `batch_size`, *optional*):
782
+ If is `None`, return padded `last_hidden_state`.
783
+ subset_indices ():
784
+ pass
785
+ unpad_inputs (`bool`, *optional*):
786
+ pass
787
+ """
788
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
789
+ output_hidden_states = (
790
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
791
+ )
792
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
793
+ unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
794
+ output_padded = length is None
795
+
796
+ if input_ids is not None and inputs_embeds is not None:
797
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
798
+ elif input_ids is not None:
799
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
800
+ input_shape = input_ids.size()
801
+ elif inputs_embeds is not None:
802
+ input_shape = inputs_embeds.size()[:-1]
803
+ else:
804
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
805
+
806
+ (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
807
+ unpad_inputs,
808
+ input_ids=input_ids,
809
+ attention_mask=attention_mask,
810
+ length=length,
811
+ token_type_ids=token_type_ids,
812
+ position_ids=position_ids,
813
+ inputs_embeds=inputs_embeds
814
+ )
815
+
816
+ batch_size, seq_length = input_shape
817
+ if unpad_inputs and self.config.use_memory_efficient_attention:
818
+ attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
819
+ else:
820
+ attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
821
+ if self.config.use_memory_efficient_attention:
822
+ attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
823
+
824
+ padding_inputs = None
825
+ if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
826
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
827
+ if not self.config.use_memory_efficient_attention:
828
+ padding_inputs = (indices, *input_shape)
829
+
830
+ attention_scale = None
831
+ if self.config.logn_attention_scale:
832
+ logger.warning_once("TODO: logn_attention_scale")
833
+
834
+ encoder_outputs = self.encoder(
835
+ embedding_output,
836
+ attention_bias=attention_bias,
837
+ rope_embeds=rope_embeds,
838
+ padding_inputs=padding_inputs,
839
+ attention_scale=attention_scale,
840
+ subset_indices=subset_indices,
841
+ head_mask=head_mask,
842
+ output_attentions=output_attentions,
843
+ output_hidden_states=output_hidden_states,
844
+ return_dict=return_dict,
845
+ )
846
+ sequence_output = encoder_outputs[0]
847
+ if unpad_inputs and output_padded:
848
+ sequence_output = pad_input(
849
+ sequence_output.squeeze(), indices, batch_size, seq_length
850
+ )
851
+
852
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
853
+
854
+ if not return_dict:
855
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
856
+
857
+ return BaseModelOutputWithPooling(
858
+ last_hidden_state=sequence_output,
859
+ pooler_output=pooled_output,
860
+ hidden_states=encoder_outputs.hidden_states,
861
+ attentions=encoder_outputs.attentions,
862
+ )
863
+
864
+
865
+ class VietnameseLMPredictionHead(nn.Module):
866
+ def __init__(self, config):
867
+ super().__init__()
868
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
869
+ self.transform_act_fn = ACT2FN[config.hidden_act]
870
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
871
+
872
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
873
+
874
+ def forward(self, hidden_states):
875
+ hidden_states = self.dense(hidden_states)
876
+ hidden_states = self.transform_act_fn(hidden_states)
877
+ hidden_states = self.norm(hidden_states)
878
+ hidden_states = self.decoder(hidden_states)
879
+ return hidden_states
880
+
881
+
882
+ class VietnameseForMaskedLM(VietnamesePreTrainedModel):
883
+ _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
884
+
885
+ def __init__(self, config: VietnameseConfig):
886
+ super().__init__(config)
887
+ self.Vietnamese = VietnameseModel(config, add_pooling_layer=False)
888
+ self.lm_head = VietnameseLMPredictionHead(config)
889
+ self.loss_fct = nn.CrossEntropyLoss()
890
+
891
+ self.post_init()
892
+
893
+ def get_output_embeddings(self):
894
+ return self.lm_head.decoder
895
+
896
+ def set_output_embeddings(self, new_embeddings):
897
+ self.lm_head.decoder = new_embeddings
898
+
899
+ def forward(
900
+ self,
901
+ input_ids: Optional[torch.Tensor] = None,
902
+ attention_mask: Optional[torch.Tensor] = None,
903
+ token_type_ids: Optional[torch.Tensor] = None,
904
+ position_ids: Optional[torch.Tensor] = None,
905
+ head_mask: Optional[torch.Tensor] = None,
906
+ inputs_embeds: Optional[torch.Tensor] = None,
907
+ labels: Optional[torch.Tensor] = None,
908
+ output_attentions: Optional[bool] = None,
909
+ output_hidden_states: Optional[bool] = None,
910
+ return_dict: Optional[bool] = None,
911
+ unpad_inputs: Optional[bool] = None,
912
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
913
+ r"""
914
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
915
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
916
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
917
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
918
+ """
919
+
920
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
921
+
922
+ if labels is None or not self.Vietnamese.config.unpad_inputs:
923
+ length = None
924
+ subset_indices = None
925
+ else:
926
+ length = attention_mask.sum(-1).tolist()
927
+ labels = labels[attention_mask.bool()].unsqueeze(0)
928
+ subset_indices = labels > -100
929
+
930
+ outputs = self.Vietnamese(
931
+ input_ids,
932
+ attention_mask=attention_mask,
933
+ length=length,
934
+ subset_indices=subset_indices,
935
+ token_type_ids=token_type_ids,
936
+ position_ids=position_ids,
937
+ head_mask=head_mask,
938
+ inputs_embeds=inputs_embeds,
939
+ output_attentions=output_attentions,
940
+ output_hidden_states=output_hidden_states,
941
+ return_dict=return_dict,
942
+ unpad_inputs=unpad_inputs,
943
+ )
944
+
945
+ sequence_output = outputs[0]
946
+ prediction_scores = self.lm_head(sequence_output)
947
+
948
+ masked_lm_loss = None
949
+ if labels is not None:
950
+ if subset_indices is None:
951
+ mask = attention_mask.bool()
952
+ prediction_scores = prediction_scores[mask]
953
+ labels = labels[mask]
954
+ else:
955
+ labels = labels[subset_indices]
956
+ masked_lm_loss = self.loss_fct(prediction_scores, labels)
957
+
958
+ if not return_dict:
959
+ output = (prediction_scores,) + outputs[2:]
960
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
961
+
962
+ return MaskedLMOutput(
963
+ loss=masked_lm_loss,
964
+ logits=prediction_scores,
965
+ hidden_states=outputs.hidden_states,
966
+ attentions=outputs.attentions,
967
+ )
968
+
969
+
970
+ class VietnameseForSequenceClassification(VietnamesePreTrainedModel):
971
+ def __init__(self, config):
972
+ super().__init__(config)
973
+ self.num_labels = config.num_labels
974
+ self.config = config
975
+
976
+ self.Vietnamese = VietnameseModel(config, add_pooling_layer=True)
977
+ classifier_dropout = (
978
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
979
+ )
980
+ self.dropout = nn.Dropout(classifier_dropout)
981
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
982
+
983
+ self.post_init()
984
+
985
+ def forward(
986
+ self,
987
+ input_ids: Optional[torch.Tensor] = None,
988
+ attention_mask: Optional[torch.Tensor] = None,
989
+ token_type_ids: Optional[torch.Tensor] = None,
990
+ position_ids: Optional[torch.Tensor] = None,
991
+ head_mask: Optional[torch.Tensor] = None,
992
+ inputs_embeds: Optional[torch.Tensor] = None,
993
+ labels: Optional[torch.Tensor] = None,
994
+ output_attentions: Optional[bool] = None,
995
+ output_hidden_states: Optional[bool] = None,
996
+ return_dict: Optional[bool] = None,
997
+ unpad_inputs: Optional[bool] = None,
998
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
999
+ r"""
1000
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1001
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1002
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1003
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1004
+ """
1005
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1006
+
1007
+ outputs = self.Vietnamese(
1008
+ input_ids,
1009
+ attention_mask=attention_mask,
1010
+ token_type_ids=token_type_ids,
1011
+ position_ids=position_ids,
1012
+ head_mask=head_mask,
1013
+ inputs_embeds=inputs_embeds,
1014
+ output_attentions=output_attentions,
1015
+ output_hidden_states=output_hidden_states,
1016
+ return_dict=return_dict,
1017
+ unpad_inputs=unpad_inputs,
1018
+ )
1019
+
1020
+ pooled_output = outputs[1]
1021
+
1022
+ pooled_output = self.dropout(pooled_output)
1023
+ logits = self.classifier(pooled_output)
1024
+
1025
+ loss = None
1026
+ if labels is not None:
1027
+ if self.config.problem_type is None:
1028
+ if self.num_labels == 1:
1029
+ self.config.problem_type = "regression"
1030
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1031
+ self.config.problem_type = "single_label_classification"
1032
+ else:
1033
+ self.config.problem_type = "multi_label_classification"
1034
+
1035
+ if self.config.problem_type == "regression":
1036
+ loss_fct = nn.MSELoss()
1037
+ if self.num_labels == 1:
1038
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1039
+ else:
1040
+ loss = loss_fct(logits, labels)
1041
+ elif self.config.problem_type == "single_label_classification":
1042
+ loss_fct = nn.CrossEntropyLoss()
1043
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1044
+ elif self.config.problem_type == "multi_label_classification":
1045
+ loss_fct = nn.BCEWithLogitsLoss()
1046
+ loss = loss_fct(logits, labels)
1047
+
1048
+ if not return_dict:
1049
+ output = (logits,) + outputs[2:]
1050
+ return ((loss,) + output) if loss is not None else output
1051
+
1052
+ return SequenceClassifierOutput(
1053
+ loss=loss,
1054
+ logits=logits,
1055
+ hidden_states=outputs.hidden_states,
1056
+ attentions=outputs.attentions,
1057
+ )
1058
+
1059
+
1060
+ class VietnameseForMultipleChoice(VietnamesePreTrainedModel):
1061
+ def __init__(self, config):
1062
+ super().__init__(config)
1063
+
1064
+ self.Vietnamese = VietnameseModel(config, add_pooling_layer=True)
1065
+ classifier_dropout = (
1066
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1067
+ )
1068
+ self.dropout = nn.Dropout(classifier_dropout)
1069
+ self.classifier = nn.Linear(config.hidden_size, 1)
1070
+
1071
+ self.post_init()
1072
+
1073
+ def forward(
1074
+ self,
1075
+ input_ids: Optional[torch.Tensor] = None,
1076
+ attention_mask: Optional[torch.Tensor] = None,
1077
+ token_type_ids: Optional[torch.Tensor] = None,
1078
+ position_ids: Optional[torch.Tensor] = None,
1079
+ head_mask: Optional[torch.Tensor] = None,
1080
+ inputs_embeds: Optional[torch.Tensor] = None,
1081
+ labels: Optional[torch.Tensor] = None,
1082
+ output_attentions: Optional[bool] = None,
1083
+ output_hidden_states: Optional[bool] = None,
1084
+ return_dict: Optional[bool] = None,
1085
+ unpad_inputs: Optional[bool] = None,
1086
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1087
+ r"""
1088
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1089
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1090
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1091
+ `input_ids` above)
1092
+ """
1093
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1094
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1095
+
1096
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1097
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1098
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1099
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1100
+ inputs_embeds = (
1101
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1102
+ if inputs_embeds is not None
1103
+ else None
1104
+ )
1105
+
1106
+ outputs = self.Vietnamese(
1107
+ input_ids,
1108
+ attention_mask=attention_mask,
1109
+ token_type_ids=token_type_ids,
1110
+ position_ids=position_ids,
1111
+ head_mask=head_mask,
1112
+ inputs_embeds=inputs_embeds,
1113
+ output_attentions=output_attentions,
1114
+ output_hidden_states=output_hidden_states,
1115
+ return_dict=return_dict,
1116
+ unpad_inputs=unpad_inputs,
1117
+ )
1118
+
1119
+ pooled_output = outputs[1]
1120
+
1121
+ pooled_output = self.dropout(pooled_output)
1122
+ logits = self.classifier(pooled_output)
1123
+ reshaped_logits = logits.view(-1, num_choices)
1124
+
1125
+ loss = None
1126
+ if labels is not None:
1127
+ loss_fct = nn.CrossEntropyLoss()
1128
+ loss = loss_fct(reshaped_logits, labels)
1129
+
1130
+ if not return_dict:
1131
+ output = (reshaped_logits,) + outputs[2:]
1132
+ return ((loss,) + output) if loss is not None else output
1133
+
1134
+ return MultipleChoiceModelOutput(
1135
+ loss=loss,
1136
+ logits=reshaped_logits,
1137
+ hidden_states=outputs.hidden_states,
1138
+ attentions=outputs.attentions,
1139
+ )
1140
+
1141
+
1142
+ @dataclass
1143
+ class VietnameseTokenClassifierOutput(ModelOutput):
1144
+ loss: Optional[torch.FloatTensor] = None
1145
+ logits: torch.FloatTensor = None
1146
+ last_hidden_state: torch.FloatTensor = None
1147
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
1148
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
1149
+
1150
+
1151
+ class VietnameseForTokenClassification(VietnamesePreTrainedModel):
1152
+ def __init__(self, config):
1153
+ super().__init__(config)
1154
+ self.num_labels = config.num_labels
1155
+
1156
+ self.Vietnamese = VietnameseModel(config, add_pooling_layer=False)
1157
+ classifier_dropout = (
1158
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1159
+ )
1160
+ self.dropout = nn.Dropout(classifier_dropout)
1161
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1162
+
1163
+ self.post_init()
1164
+
1165
+ def forward(
1166
+ self,
1167
+ input_ids: Optional[torch.Tensor] = None,
1168
+ attention_mask: Optional[torch.Tensor] = None,
1169
+ token_type_ids: Optional[torch.Tensor] = None,
1170
+ position_ids: Optional[torch.Tensor] = None,
1171
+ head_mask: Optional[torch.Tensor] = None,
1172
+ inputs_embeds: Optional[torch.Tensor] = None,
1173
+ labels: Optional[torch.Tensor] = None,
1174
+ output_attentions: Optional[bool] = None,
1175
+ output_hidden_states: Optional[bool] = None,
1176
+ return_dict: Optional[bool] = None,
1177
+ unpad_inputs: Optional[bool] = None,
1178
+ ) -> Union[Tuple[torch.Tensor], VietnameseTokenClassifierOutput]:
1179
+ r"""
1180
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1181
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1182
+ """
1183
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1184
+
1185
+ outputs = self.Vietnamese(
1186
+ input_ids,
1187
+ attention_mask=attention_mask,
1188
+ token_type_ids=token_type_ids,
1189
+ position_ids=position_ids,
1190
+ head_mask=head_mask,
1191
+ inputs_embeds=inputs_embeds,
1192
+ output_attentions=output_attentions,
1193
+ output_hidden_states=output_hidden_states,
1194
+ return_dict=return_dict,
1195
+ unpad_inputs=unpad_inputs,
1196
+ )
1197
+
1198
+ sequence_output = outputs[0]
1199
+
1200
+ sequence_output = self.dropout(sequence_output)
1201
+ logits = self.classifier(sequence_output)
1202
+
1203
+ loss = None
1204
+ if labels is not None:
1205
+ loss_fct = nn.CrossEntropyLoss()
1206
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1207
+
1208
+ if not return_dict:
1209
+ output = (logits,) + outputs[2:]
1210
+ return ((loss,) + output) if loss is not None else output
1211
+
1212
+ return VietnameseTokenClassifierOutput(
1213
+ loss=loss,
1214
+ logits=logits,
1215
+ last_hidden_state=sequence_output,
1216
+ hidden_states=outputs.hidden_states,
1217
+ attentions=outputs.attentions,
1218
+ )
1219
+
1220
+
1221
+ class VietnameseForQuestionAnswering(VietnamesePreTrainedModel):
1222
+ def __init__(self, config):
1223
+ super().__init__(config)
1224
+ self.num_labels = config.num_labels
1225
+
1226
+ self.Vietnamese = VietnameseModel(config, add_pooling_layer=False)
1227
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1228
+
1229
+ self.post_init()
1230
+
1231
+ def forward(
1232
+ self,
1233
+ input_ids: Optional[torch.Tensor] = None,
1234
+ attention_mask: Optional[torch.Tensor] = None,
1235
+ token_type_ids: Optional[torch.Tensor] = None,
1236
+ position_ids: Optional[torch.Tensor] = None,
1237
+ head_mask: Optional[torch.Tensor] = None,
1238
+ inputs_embeds: Optional[torch.Tensor] = None,
1239
+ start_positions: Optional[torch.Tensor] = None,
1240
+ end_positions: Optional[torch.Tensor] = None,
1241
+ output_attentions: Optional[bool] = None,
1242
+ output_hidden_states: Optional[bool] = None,
1243
+ return_dict: Optional[bool] = None,
1244
+ unpad_inputs: Optional[bool] = None,
1245
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1246
+ r"""
1247
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1248
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1249
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1250
+ are not taken into account for computing the loss.
1251
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1252
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1253
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1254
+ are not taken into account for computing the loss.
1255
+ """
1256
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1257
+
1258
+ outputs = self.Vietnamese(
1259
+ input_ids,
1260
+ attention_mask=attention_mask,
1261
+ token_type_ids=token_type_ids,
1262
+ position_ids=position_ids,
1263
+ head_mask=head_mask,
1264
+ inputs_embeds=inputs_embeds,
1265
+ output_attentions=output_attentions,
1266
+ output_hidden_states=output_hidden_states,
1267
+ return_dict=return_dict,
1268
+ unpad_inputs=unpad_inputs,
1269
+ )
1270
+
1271
+ sequence_output = outputs[0]
1272
+
1273
+ logits = self.qa_outputs(sequence_output)
1274
+ start_logits, end_logits = logits.split(1, dim=-1)
1275
+ start_logits = start_logits.squeeze(-1).contiguous()
1276
+ end_logits = end_logits.squeeze(-1).contiguous()
1277
+
1278
+ total_loss = None
1279
+ if start_positions is not None and end_positions is not None:
1280
+ if len(start_positions.size()) > 1:
1281
+ start_positions = start_positions.squeeze(-1)
1282
+ if len(end_positions.size()) > 1:
1283
+ end_positions = end_positions.squeeze(-1)
1284
+ ignored_index = start_logits.size(1)
1285
+ start_positions = start_positions.clamp(0, ignored_index)
1286
+ end_positions = end_positions.clamp(0, ignored_index)
1287
+
1288
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
1289
+ start_loss = loss_fct(start_logits, start_positions)
1290
+ end_loss = loss_fct(end_logits, end_positions)
1291
+ total_loss = (start_loss + end_loss) / 2
1292
+
1293
+ if not return_dict:
1294
+ output = (start_logits, end_logits) + outputs[2:]
1295
+ return ((total_loss,) + output) if total_loss is not None else output
1296
+
1297
+ return QuestionAnsweringModelOutput(
1298
+ loss=total_loss,
1299
+ start_logits=start_logits,
1300
+ end_logits=end_logits,
1301
+ hidden_states=outputs.hidden_states,
1302
+ attentions=outputs.attentions,
1303
+ )
1304
+
1305
+
1306
+
1307
+
1308
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
1309
+ """
1310
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1311
+ are ignored. This is modified from fairseq's `utils.make_positions`.
1312
+ Args:
1313
+ x: torch.Tensor x:
1314
+ Returns: torch.Tensor
1315
+ """
1316
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1317
+ mask = input_ids.ne(padding_idx).int()
1318
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
1319
+ return incremental_indices.long() + padding_idx