--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_distilbert_model results: [] --- # finetuned_distilbert_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0728 - Precision: 0.6674 - Recall: 0.6483 - F1: 0.6577 - Accuracy: 0.9705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0818 | 1.0 | 2185 | 0.0766 | 0.6435 | 0.5998 | 0.6209 | 0.9692 | | 0.0709 | 2.0 | 4370 | 0.0739 | 0.6532 | 0.6241 | 0.6383 | 0.9700 | | 0.0638 | 3.0 | 6555 | 0.0728 | 0.6674 | 0.6483 | 0.6577 | 0.9705 | | 0.0579 | 4.0 | 8740 | 0.0753 | 0.6592 | 0.6813 | 0.6701 | 0.9698 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1