File size: 1,971 Bytes
be97497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: led_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# led_model
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4363
- Rouge1: 0.7117
- Rouge2: 0.5663
- Rougel: 0.684
- Rougelsum: 0.6843
- Gen Len: 15.7955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.6184 | 0.9995 | 546 | 0.4788 | 0.699 | 0.5474 | 0.6691 | 0.6694 | 15.7362 |
| 0.4523 | 1.9991 | 1092 | 0.4435 | 0.7029 | 0.5569 | 0.6773 | 0.6773 | 15.6763 |
| 0.3732 | 2.9986 | 1638 | 0.4392 | 0.7104 | 0.565 | 0.6826 | 0.6827 | 15.8442 |
| 0.3249 | 3.9982 | 2184 | 0.4363 | 0.7117 | 0.5663 | 0.684 | 0.6843 | 15.7955 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|