danieladejumo commited on
Commit
034e642
1 Parent(s): 80fbef2

Initial commit

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1172.14 +/- 177.58
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e69ecb83b76a4bbdc0c3d2db36bb6807a0db9c988c07d7cca99fc0c075a9a159
3
+ size 129193
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fbe329b90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fbe329c20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fbe329cb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fbe329d40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1fbe329dd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1fbe329e60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fbe329ef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1fbe329f80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fbe2ae050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fbe2ae0e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fbe2ae170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f1fbe2f3a50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1662823088.894961,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA2jLbv32+4z/vhqnAdwKTv2PFuz4F2IA9xq3mPkyDLD1kN6O/Sf6XOjC1g7+YoiK9eB+kv7MlEj3e1aE+F84iPZOCmj+lFbe73EdVP/etuzzF1qw/d7WQPGiR5r3Srac7WImVvxqk1T4BFP8+92ibP5QplT2nAo4/WZ6SPnrt9z+BIcQ+Er2wPzccHr4aeie/8bdMP9Ea9z/PmR0/F9G4Pgaxur76+ZQ/czYQP2L/r74SzYw/GJC1vi+qzL7trQs/qJoKP/dzhj9Zeiu/LRvMPGQhWz8apNU+ART/PkTZUr/ssLo+sClyPgrwIz/PTHE/pcZKvoVFGb8RAse9/tQuv5spiz/WE1W/Ngj/PgoGaT0Elym/u5mOPvxzST7mIQ0+A/6HviUKeb2JMQA/oegTQKUdEj7p5Pq+JyqxvkA3AEBkIVs/GqTVPgEU/z5E2VK/PKCwvs1Qfj2mUCE/er0mQJXJDz+OoIe/T/iEPtClKr9+/lE/y3OFQEwbQD/aedU/XXcHvvmokj9ejxY/zsUuvm2fiz+uhIk8uhVsPuaxrL4emnA/SYKGP6wZc7+bQ1Y9WImVvxqk1T4BFP8+RNlSv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAEw1DrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBtby9AAAAAAsW+b8AAAAAu0kqPQAAAABH5uc/AAAAABgRy70AAAAAgWT/PwAAAAA76fM9AAAAAPK/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+hm20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJYXPugAAAADJcei/AAAAACkZqr0AAAAAMnjaPwAAAAAcSw4+AAAAAPqY6T8AAAAAF9R+PQAAAAAZM+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeYhjtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBDQ7r0AAAAAqzXcvwAAAABEMqS9AAAAAK615T8AAAAAW9nMvQAAAADJges/AAAAABBFtrwAAAAAeQXuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvfgjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDymAU9AAAAAHTL6b8AAAAA42hpPQAAAADkXuw/AAAAAC1qFT0AAAAAY0DsPwAAAAAjROG9AAAAAHAg7r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJK0oWqLjxWMAWyUTegDjAF0lEdAp8HViDujRHV9lChoBkdAkiRhoRIz32gHTegDaAhHQKfB7j94u9R1fZQoaAZHQJHn/850bLloB03oA2gIR0CnwtK2KEWZdX2UKGgGR0CM8G66reZYaAdN6ANoCEdAp85S6STyKHV9lChoBkdAkRmfnjhky2gHTegDaAhHQKfOdc1wYLt1fZQoaAZHQHybvkRzzVdoB03oA2gIR0Cnzo1bRne0dX2UKGgGR0CJoqi35N48aAdN6ANoCEdAp89wFTvRZ3V9lChoBkdAkNkCgbp/w2gHTegDaAhHQKfbBC79Q411fZQoaAZHQJI54K5TZQJoB03oA2gIR0Cn2ygh0QsgdX2UKGgGR0CQU1g5R0lraAdN6ANoCEdAp9s9/YraunV9lChoBkdAkFVJBC2MKmgHTegDaAhHQKfcIFbmlqJ1fZQoaAZHQJFPB9srNGFoB03oA2gIR0Cn55mzKLbYdX2UKGgGR0CPfLZRKpT/aAdN6ANoCEdAp+e8C1Z1WHV9lChoBkdAh9JZy+6AfGgHTegDaAhHQKfn0kQf6oF1fZQoaAZHQIyuSBiCrcVoB03oA2gIR0Cn6LpQDV6NdX2UKGgGR0COVxhOP/70aAdN6ANoCEdAp/QYRqXWv3V9lChoBkdAi6jMZYPoV2gHTegDaAhHQKf0O6MBIWh1fZQoaAZHQI7wjeO4oZ1oB03oA2gIR0Cn9FJA+pwTdX2UKGgGR0CQs3MEzO5baAdN6ANoCEdAp/VDXtjTa3V9lChoBkdAkXiXA2ycC2gHTegDaAhHQKgAn59E1EV1fZQoaAZHQI4km/i5uqFoB03oA2gIR0CoAMHYHxBmdX2UKGgGR0B+qTWTX8O1aAdN6ANoCEdAqADaBGx2S3V9lChoBkdAiiSGorFwUGgHTegDaAhHQKgBwp71Iy11fZQoaAZHQHwV+3QUpNNoB03oA2gIR0CoDV/VRUFTdX2UKGgGR0CI0pwiqyWzaAdN6ANoCEdAqA2C8tf5UXV9lChoBkdAeiLG0NSZSmgHTegDaAhHQKgNmPOIInl1fZQoaAZHQHcWyPyTY/VoB03oA2gIR0CoDnm7rcCYdX2UKGgGR0B5LwUwi7kGaAdN6ANoCEdAqBo63PRiPXV9lChoBkdAi9vYl6Z6U2gHTegDaAhHQKgaXTefqX51fZQoaAZHQIya22gFotdoB03oA2gIR0CoGnOUD+zddX2UKGgGR0B+sukfs/puaAdN6ANoCEdAqBtXOt4iYHV9lChoBkdAgtV6Oo5xR2gHTegDaAhHQKgnDtvXK8t1fZQoaAZHQHwCTO9nK4hoB03oA2gIR0CoJzJqIrOJdX2UKGgGR0CA9cxtYSxraAdN6ANoCEdAqCdJHNHH3nV9lChoBkdAfdlgM+eOGWgHTegDaAhHQKgoN4Uvf0p1fZQoaAZHQIBGGplz2exoB03oA2gIR0CoM9vAGjbjdX2UKGgGR0CHxZ07r9l3aAdN6ANoCEdAqDQBChN/OXV9lChoBkdAfi0MCtA9m2gHTegDaAhHQKg0GMVDa5B1fZQoaAZHQI79ggDA8CBoB03oA2gIR0CoNQHaN+9bdX2UKGgGR0CCBgY9gWrPaAdN6ANoCEdAqECguqWC3HV9lChoBkdAj0T1fmcOLGgHTegDaAhHQKhAwZc9nsd1fZQoaAZHQH6lSd4FA3VoB03oA2gIR0CoQNgvUSZjdX2UKGgGR0CEAexrSE13aAdN6ANoCEdAqEG5Bmf5DnV9lChoBkdAiSRsW43FUGgHTegDaAhHQKhNTQDV6NV1fZQoaAZHQIHGq7EpAlhoB03oA2gIR0CoTW7xusLfdX2UKGgGR0CP75pQk5ZKaAdN6ANoCEdAqE2FBrvb5HV9lChoBkdAgqoHYg7o0WgHTegDaAhHQKhOaPuG9Ht1fZQoaAZHQI/Vp5iVjZtoB03oA2gIR0CoWi2PLgXNdX2UKGgGR0B7bklme18caAdN6ANoCEdAqFpQ82aUinV9lChoBkdAkcRgqI7/42gHTegDaAhHQKhaaDOC5Et1fZQoaAZHQIani7ROUMZoB03oA2gIR0CoW1s1sLv1dX2UKGgGR0CGs41eBxxUaAdN6ANoCEdAqGbR5HEuQXV9lChoBkdAi3tVjZtelmgHTegDaAhHQKhm9oJRfnh1fZQoaAZHQImPYRTS9dxoB03oA2gIR0CoZwyv1UVBdX2UKGgGR0CPnrf51vETaAdN6ANoCEdAqGfxUNrj53V9lChoBkdAjv252IO6NGgHTegDaAhHQKhzY9WZJCl1fZQoaAZHQI3+kXpGFzxoB03oA2gIR0Coc4XvQWvbdX2UKGgGR0COaUD4gzP9aAdN6ANoCEdAqHOcmtyPuHV9lChoBkdAkEpgyqMm4WgHTegDaAhHQKh0fNATqSp1fZQoaAZHQIiqPZbpu/FoB03oA2gIR0Cof/+lTFVDdX2UKGgGR0CRDKVbiZOSaAdN6ANoCEdAqIAhV2iconV9lChoBkdAhbvTxwyZa2gHTegDaAhHQKiAN9b5dnl1fZQoaAZHQJChed4FA3VoB03oA2gIR0CogSAGbCrMdX2UKGgGR0CQaPx4Y77saAdN6ANoCEdAqIyKK+BYm3V9lChoBkdAjKYaP8yeqmgHTegDaAhHQKiMrH5Jsft1fZQoaAZHQJLwlfa6BiFoB03oA2gIR0CojMLZBcAzdX2UKGgGR0CQBhtO2y9maAdN6ANoCEdAqI2q53C9AXV9lChoBkdAkKFcslLOA2gHTegDaAhHQKiZI3CKrJd1fZQoaAZHQI/QgP3BYV9oB03oA2gIR0ComUS26TW5dX2UKGgGR0COESFW4mTlaAdN6ANoCEdAqJlavFFUhnV9lChoBkdAjvcXT3IuG2gHTegDaAhHQKiaPPgvUSZ1fZQoaAZHQHav1KCg9NhoB00KAmgIR0Con8LaufVadX2UKGgGR0CQCRjDsMRZaAdN6ANoCEdAqKWXW4EwFnV9lChoBkdAkKTFYuCf6GgHTegDaAhHQKilz7qIJqt1fZQoaAZHQJJ92Cf6Gg1oB03oA2gIR0CoprhbwBo3dX2UKGgGR0CReuJo0ygxaAdN6ANoCEdAqKxUcABDHHV9lChoBkdAkhYClJpWWGgHTegDaAhHQKiyJiw0O3F1fZQoaAZHQI/Hul67dzpoB03oA2gIR0CosmDcdo38dX2UKGgGR0CRPbADaGpNaAdN6ANoCEdAqLNNqagElnV9lChoBkdAj/TU6o2n9GgHTegDaAhHQKi4y6VdHDt1fZQoaAZHQHRhbupjtoloB03oA2gIR0CovsEAo5PudX2UKGgGR0CQSqDc/MW5aAdN6ANoCEdAqL75VGTcI3V9lChoBkdAkOpTABT4tmgHTegDaAhHQKi/336AOKB1fZQoaAZHQIWlMIw/PgNoB03oA2gIR0CoxXHoPkJbdX2UKGgGR0CQYJ1KoQ4CaAdN6ANoCEdAqMtdfzBhyHV9lChoBkdAj4uu9eyAx2gHTegDaAhHQKjLkvHtF8Z1fZQoaAZHQIR3JNj9XLhoB03oA2gIR0CozHNYbKigdX2UKGgGR0CQm/wmmce9aAdN6ANoCEdAqNIhVn27F3V9lChoBkdAksl4g3cYZWgHTegDaAhHQKjX9/Aj6ep1fZQoaAZHQJNt4aDPGAFoB03oA2gIR0Co2C8hs67vdX2UKGgGR0CRa8CGetjkaAdN6ANoCEdAqNkY7ihnJ3V9lChoBkdAkTdJCOWBz2gHTegDaAhHQKjeiljVhCt1fZQoaAZHQJR7Rn3+MqBoB03oA2gIR0Co5Fzy8SPEdX2UKGgGR0CTMBPAO8TSaAdN6ANoCEdAqOSTH4oJA3V9lChoBkdAksx86mwaBWgHTegDaAhHQKjlfBInSfF1fZQoaAZHQJHm3t+kP+ZoB03oA2gIR0Co6uYjSofkdX2UKGgGR0B0i3EzfrKOaAdN6ANoCEdAqPCpJVbRnnV9lChoBkdAk1OrvkRzzWgHTegDaAhHQKjw39l2/zt1fZQoaAZHQJMkXOlfqotoB03oA2gIR0Co8cp5u63BdX2UKGgGR0CRlR8R+SbIaAdN6ANoCEdAqPdXEl3QlnVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0583db8c2991dcedf4412912f9cdc67e68678813b59554c995fae1dee0470703
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b95f59cd6626270e18fa9fae911c811f844abd889ec77b183f6f4e76c5e9f34
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fbe329b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fbe329c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fbe329cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fbe329d40>", "_build": "<function ActorCriticPolicy._build at 0x7f1fbe329dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1fbe329e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fbe329ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1fbe329f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fbe2ae050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fbe2ae0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fbe2ae170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1fbe2f3a50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662823088.894961, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA2jLbv32+4z/vhqnAdwKTv2PFuz4F2IA9xq3mPkyDLD1kN6O/Sf6XOjC1g7+YoiK9eB+kv7MlEj3e1aE+F84iPZOCmj+lFbe73EdVP/etuzzF1qw/d7WQPGiR5r3Srac7WImVvxqk1T4BFP8+92ibP5QplT2nAo4/WZ6SPnrt9z+BIcQ+Er2wPzccHr4aeie/8bdMP9Ea9z/PmR0/F9G4Pgaxur76+ZQ/czYQP2L/r74SzYw/GJC1vi+qzL7trQs/qJoKP/dzhj9Zeiu/LRvMPGQhWz8apNU+ART/PkTZUr/ssLo+sClyPgrwIz/PTHE/pcZKvoVFGb8RAse9/tQuv5spiz/WE1W/Ngj/PgoGaT0Elym/u5mOPvxzST7mIQ0+A/6HviUKeb2JMQA/oegTQKUdEj7p5Pq+JyqxvkA3AEBkIVs/GqTVPgEU/z5E2VK/PKCwvs1Qfj2mUCE/er0mQJXJDz+OoIe/T/iEPtClKr9+/lE/y3OFQEwbQD/aedU/XXcHvvmokj9ejxY/zsUuvm2fiz+uhIk8uhVsPuaxrL4emnA/SYKGP6wZc7+bQ1Y9WImVvxqk1T4BFP8+RNlSv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAEw1DrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBtby9AAAAAAsW+b8AAAAAu0kqPQAAAABH5uc/AAAAABgRy70AAAAAgWT/PwAAAAA76fM9AAAAAPK/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+hm20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJYXPugAAAADJcei/AAAAACkZqr0AAAAAMnjaPwAAAAAcSw4+AAAAAPqY6T8AAAAAF9R+PQAAAAAZM+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeYhjtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBDQ7r0AAAAAqzXcvwAAAABEMqS9AAAAAK615T8AAAAAW9nMvQAAAADJges/AAAAABBFtrwAAAAAeQXuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvfgjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDymAU9AAAAAHTL6b8AAAAA42hpPQAAAADkXuw/AAAAAC1qFT0AAAAAY0DsPwAAAAAjROG9AAAAAHAg7r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJK0oWqLjxWMAWyUTegDjAF0lEdAp8HViDujRHV9lChoBkdAkiRhoRIz32gHTegDaAhHQKfB7j94u9R1fZQoaAZHQJHn/850bLloB03oA2gIR0CnwtK2KEWZdX2UKGgGR0CM8G66reZYaAdN6ANoCEdAp85S6STyKHV9lChoBkdAkRmfnjhky2gHTegDaAhHQKfOdc1wYLt1fZQoaAZHQHybvkRzzVdoB03oA2gIR0Cnzo1bRne0dX2UKGgGR0CJoqi35N48aAdN6ANoCEdAp89wFTvRZ3V9lChoBkdAkNkCgbp/w2gHTegDaAhHQKfbBC79Q411fZQoaAZHQJI54K5TZQJoB03oA2gIR0Cn2ygh0QsgdX2UKGgGR0CQU1g5R0lraAdN6ANoCEdAp9s9/YraunV9lChoBkdAkFVJBC2MKmgHTegDaAhHQKfcIFbmlqJ1fZQoaAZHQJFPB9srNGFoB03oA2gIR0Cn55mzKLbYdX2UKGgGR0CPfLZRKpT/aAdN6ANoCEdAp+e8C1Z1WHV9lChoBkdAh9JZy+6AfGgHTegDaAhHQKfn0kQf6oF1fZQoaAZHQIyuSBiCrcVoB03oA2gIR0Cn6LpQDV6NdX2UKGgGR0COVxhOP/70aAdN6ANoCEdAp/QYRqXWv3V9lChoBkdAi6jMZYPoV2gHTegDaAhHQKf0O6MBIWh1fZQoaAZHQI7wjeO4oZ1oB03oA2gIR0Cn9FJA+pwTdX2UKGgGR0CQs3MEzO5baAdN6ANoCEdAp/VDXtjTa3V9lChoBkdAkXiXA2ycC2gHTegDaAhHQKgAn59E1EV1fZQoaAZHQI4km/i5uqFoB03oA2gIR0CoAMHYHxBmdX2UKGgGR0B+qTWTX8O1aAdN6ANoCEdAqADaBGx2S3V9lChoBkdAiiSGorFwUGgHTegDaAhHQKgBwp71Iy11fZQoaAZHQHwV+3QUpNNoB03oA2gIR0CoDV/VRUFTdX2UKGgGR0CI0pwiqyWzaAdN6ANoCEdAqA2C8tf5UXV9lChoBkdAeiLG0NSZSmgHTegDaAhHQKgNmPOIInl1fZQoaAZHQHcWyPyTY/VoB03oA2gIR0CoDnm7rcCYdX2UKGgGR0B5LwUwi7kGaAdN6ANoCEdAqBo63PRiPXV9lChoBkdAi9vYl6Z6U2gHTegDaAhHQKgaXTefqX51fZQoaAZHQIya22gFotdoB03oA2gIR0CoGnOUD+zddX2UKGgGR0B+sukfs/puaAdN6ANoCEdAqBtXOt4iYHV9lChoBkdAgtV6Oo5xR2gHTegDaAhHQKgnDtvXK8t1fZQoaAZHQHwCTO9nK4hoB03oA2gIR0CoJzJqIrOJdX2UKGgGR0CA9cxtYSxraAdN6ANoCEdAqCdJHNHH3nV9lChoBkdAfdlgM+eOGWgHTegDaAhHQKgoN4Uvf0p1fZQoaAZHQIBGGplz2exoB03oA2gIR0CoM9vAGjbjdX2UKGgGR0CHxZ07r9l3aAdN6ANoCEdAqDQBChN/OXV9lChoBkdAfi0MCtA9m2gHTegDaAhHQKg0GMVDa5B1fZQoaAZHQI79ggDA8CBoB03oA2gIR0CoNQHaN+9bdX2UKGgGR0CCBgY9gWrPaAdN6ANoCEdAqECguqWC3HV9lChoBkdAj0T1fmcOLGgHTegDaAhHQKhAwZc9nsd1fZQoaAZHQH6lSd4FA3VoB03oA2gIR0CoQNgvUSZjdX2UKGgGR0CEAexrSE13aAdN6ANoCEdAqEG5Bmf5DnV9lChoBkdAiSRsW43FUGgHTegDaAhHQKhNTQDV6NV1fZQoaAZHQIHGq7EpAlhoB03oA2gIR0CoTW7xusLfdX2UKGgGR0CP75pQk5ZKaAdN6ANoCEdAqE2FBrvb5HV9lChoBkdAgqoHYg7o0WgHTegDaAhHQKhOaPuG9Ht1fZQoaAZHQI/Vp5iVjZtoB03oA2gIR0CoWi2PLgXNdX2UKGgGR0B7bklme18caAdN6ANoCEdAqFpQ82aUinV9lChoBkdAkcRgqI7/42gHTegDaAhHQKhaaDOC5Et1fZQoaAZHQIani7ROUMZoB03oA2gIR0CoW1s1sLv1dX2UKGgGR0CGs41eBxxUaAdN6ANoCEdAqGbR5HEuQXV9lChoBkdAi3tVjZtelmgHTegDaAhHQKhm9oJRfnh1fZQoaAZHQImPYRTS9dxoB03oA2gIR0CoZwyv1UVBdX2UKGgGR0CPnrf51vETaAdN6ANoCEdAqGfxUNrj53V9lChoBkdAjv252IO6NGgHTegDaAhHQKhzY9WZJCl1fZQoaAZHQI3+kXpGFzxoB03oA2gIR0Coc4XvQWvbdX2UKGgGR0COaUD4gzP9aAdN6ANoCEdAqHOcmtyPuHV9lChoBkdAkEpgyqMm4WgHTegDaAhHQKh0fNATqSp1fZQoaAZHQIiqPZbpu/FoB03oA2gIR0Cof/+lTFVDdX2UKGgGR0CRDKVbiZOSaAdN6ANoCEdAqIAhV2iconV9lChoBkdAhbvTxwyZa2gHTegDaAhHQKiAN9b5dnl1fZQoaAZHQJChed4FA3VoB03oA2gIR0CogSAGbCrMdX2UKGgGR0CQaPx4Y77saAdN6ANoCEdAqIyKK+BYm3V9lChoBkdAjKYaP8yeqmgHTegDaAhHQKiMrH5Jsft1fZQoaAZHQJLwlfa6BiFoB03oA2gIR0CojMLZBcAzdX2UKGgGR0CQBhtO2y9maAdN6ANoCEdAqI2q53C9AXV9lChoBkdAkKFcslLOA2gHTegDaAhHQKiZI3CKrJd1fZQoaAZHQI/QgP3BYV9oB03oA2gIR0ComUS26TW5dX2UKGgGR0COESFW4mTlaAdN6ANoCEdAqJlavFFUhnV9lChoBkdAjvcXT3IuG2gHTegDaAhHQKiaPPgvUSZ1fZQoaAZHQHav1KCg9NhoB00KAmgIR0Con8LaufVadX2UKGgGR0CQCRjDsMRZaAdN6ANoCEdAqKWXW4EwFnV9lChoBkdAkKTFYuCf6GgHTegDaAhHQKilz7qIJqt1fZQoaAZHQJJ92Cf6Gg1oB03oA2gIR0CoprhbwBo3dX2UKGgGR0CReuJo0ygxaAdN6ANoCEdAqKxUcABDHHV9lChoBkdAkhYClJpWWGgHTegDaAhHQKiyJiw0O3F1fZQoaAZHQI/Hul67dzpoB03oA2gIR0CosmDcdo38dX2UKGgGR0CRPbADaGpNaAdN6ANoCEdAqLNNqagElnV9lChoBkdAj/TU6o2n9GgHTegDaAhHQKi4y6VdHDt1fZQoaAZHQHRhbupjtoloB03oA2gIR0CovsEAo5PudX2UKGgGR0CQSqDc/MW5aAdN6ANoCEdAqL75VGTcI3V9lChoBkdAkOpTABT4tmgHTegDaAhHQKi/336AOKB1fZQoaAZHQIWlMIw/PgNoB03oA2gIR0CoxXHoPkJbdX2UKGgGR0CQYJ1KoQ4CaAdN6ANoCEdAqMtdfzBhyHV9lChoBkdAj4uu9eyAx2gHTegDaAhHQKjLkvHtF8Z1fZQoaAZHQIR3JNj9XLhoB03oA2gIR0CozHNYbKigdX2UKGgGR0CQm/wmmce9aAdN6ANoCEdAqNIhVn27F3V9lChoBkdAksl4g3cYZWgHTegDaAhHQKjX9/Aj6ep1fZQoaAZHQJNt4aDPGAFoB03oA2gIR0Co2C8hs67vdX2UKGgGR0CRa8CGetjkaAdN6ANoCEdAqNkY7ihnJ3V9lChoBkdAkTdJCOWBz2gHTegDaAhHQKjeiljVhCt1fZQoaAZHQJR7Rn3+MqBoB03oA2gIR0Co5Fzy8SPEdX2UKGgGR0CTMBPAO8TSaAdN6ANoCEdAqOSTH4oJA3V9lChoBkdAksx86mwaBWgHTegDaAhHQKjlfBInSfF1fZQoaAZHQJHm3t+kP+ZoB03oA2gIR0Co6uYjSofkdX2UKGgGR0B0i3EzfrKOaAdN6ANoCEdAqPCpJVbRnnV9lChoBkdAk1OrvkRzzWgHTegDaAhHQKjw39l2/zt1fZQoaAZHQJMkXOlfqotoB03oA2gIR0Co8cp5u63BdX2UKGgGR0CRlR8R+SbIaAdN6ANoCEdAqPdXEl3QlnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:738b01690b850dfd0dcafb241aebb9e7ac9820005fb2e0b5be0bd1c2124ee8e0
3
+ size 1148533
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1172.1444154430587, "std_reward": 177.57652739253376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-10T16:25:35.729592"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca81ad7f6235522c1d61064f667353c2300064765f4c141d0a04de7dba21f27b
3
+ size 2763