--- license: llama2 --- # Sample repository Development Status :: 2 - Pre-Alpha
Developed by MinWoo Park, 2023, Seoul, South Korea. [Contact: parkminwoo1991@gmail.com](mailto:parkminwoo1991@gmail.com). [![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fdanielpark%2Fko-llama-2-jindo-7b-instruct-4bit-128g-gptq&count_bg=%23000000&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=views&edge_flat=false)](https://huggingface.co/danielpark/ko-llama-2-jindo-7b-instruct-4bit-128g-gptq) # danielpark/ko-llama-2-jindo-7b-instruct-4bit-128g-gptq model card - 4-bit quantization and 128 group size weight of [danielpark/ko-llama-2-jindo-7b-instruct](https://huggingface.co/danielpark/ko-llama-2-jindo-7b-instruct) - GPTQ is the state-of-the-art one-shot weight quantization method. This code is built upon [GPTQ](https://github.com/IST-DASLab/gptq), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [GPTQ-triton](https://github.com/fpgaminer/GPTQ-triton), [Auto-GPTQ](https://github.com/PanQiWei/AutoGPTQ). ## Prompt Template ``` ### System: {System} ### User: {User} ### Assistant: {Assistant} ``` # Inference [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lNDLSGR4_prc1QWYrbbhsgpYwYNkklzg?usp=sharing) Install [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) for generating. ``` $ pip install auto-gptq ``` ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM # Set config MODEL_NAME_OR_PATH = "danielpark/ko-llama-2-jindo-7b-instruct-4bit-128g-gptq" MODEL_BASENAME = "gptq_model-4bit-128g" USE_TRITON = False MODEL, TOKENIZER = AutoGPTQForCausalLM.from_quantized( MODEL_NAME_OR_PATH, model_basename=MODEL_BASENAME, use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=USE_TRITON, quantize_config=None ), AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) def generate_text_with_model(prompt): prompt_template = f"{prompt}\n" input_ids = TOKENIZER(prompt_template, return_tensors='pt').input_ids.cuda() output = MODEL.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) generated_text = TOKENIZER.decode(output[0]) return generated_text def generate_text_with_pipeline(prompt): logging.set_verbosity(logging.CRITICAL) pipe = pipeline( "text-generation", model=MODEL, tokenizer=TOKENIZER, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) prompt_template = f"{prompt}\n" generated_text = pipe(prompt_template)[0]['generated_text'] return generated_text # Example prompt_text = "What is GPTQ?" generated_text_model = generate_text_with_model(prompt_text) print(generated_text_model) generated_text_pipeline = generate_text_with_pipeline(prompt_text) print(generated_text_pipeline) ``` ## Web Demo I implement the web demo using several popular tools that allow us to rapidly create web UIs. | model | web ui | quantinized | | --- | --- | --- | | danielpark/ko-llama-2-jindo-7b-instruct. | using [gradio](https://github.com/dsdanielpark/gradio) on [colab](https://colab.research.google.com/drive/1zwR7rz6Ym53tofCGwZZU8y5K_t1r1qqo#scrollTo=p2xw_g80xMsD) | - | | danielpark/ko-llama-2-jindo-7b-instruct-4bit-128g-gptq | using [text-generation-webui](https://github.com/oobabooga/text-generation-webui) on [colab](https://colab.research.google.com/drive/19ihYHsyg_5QFZ_A28uZNR_Z68E_09L4G) | gptq | | danielpark/ko-llama-2-jindo-7b-instruct-ggml | [koboldcpp-v1.38](https://github.com/LostRuins/koboldcpp/releases/tag/v1.38) | ggml |