--- license: apache-2.0 tags: - generated_from_trainer datasets: - commonsense_qa metrics: - accuracy model_index: - name: albert-xxlarge-v2-finetuned-csqa results: - dataset: name: commonsense_qa type: commonsense_qa args: default metric: name: Accuracy type: accuracy value: 0.7870597839355469 base_model: albert-xxlarge-v2 --- # albert-xxlarge-v2-finetuned-csqa This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.6177 - Accuracy: 0.7871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7464 | 1.0 | 609 | 0.5319 | 0.7985 | | 0.3116 | 2.0 | 1218 | 0.6422 | 0.7936 | | 0.0769 | 3.0 | 1827 | 1.2674 | 0.7952 | | 0.0163 | 4.0 | 2436 | 1.4839 | 0.7903 | | 0.0122 | 5.0 | 3045 | 1.6177 | 0.7871 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3