First version of lunar lander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 275.68 +/- 14.68
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781dfe6d8430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781dfe6d84c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781dfe6d8550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781dfe6d85e0>", "_build": "<function ActorCriticPolicy._build at 0x781dfe6d8670>", "forward": "<function ActorCriticPolicy.forward at 0x781dfe6d8700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781dfe6d8790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781dfe6d8820>", "_predict": "<function ActorCriticPolicy._predict at 0x781dfe6d88b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781dfe6d8940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781dfe6d89d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781dfe6d8a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781dfe86bb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715341823358523537, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM8hr0UroO6iFBOuwMvgTjblTU7AhngOQAAgD8AAIA/miEqvMMtULp0STE3f7QGti6IfzuTR0G2AACAPwAAgD9mRvE7hLOuPR0sVL15jma+meAuvaiT/DwAAAAAAAAAANC7mz6hyDU/BudmvmYkAL823ts+MtZ6vgAAAAAAAAAAZmB7vXzbNj2KGO49ElFfvmf4Oz3EgwS+AAAAAAAAAACaYQ07dwZ0Pu093b3Vc5a+GgZXvdCAF7wAAAAAAAAAAHNyAr49PHo/5lZfvoq0+74qJw2+F1+zPAAAAAAAAAAA2ibRvSkAWby2bC49jFyAPJ01jD3HX7M9AACAPwAAgD+6jV0+DWiGPv7Cwr40HH2+WkNZvI/GDb4AAAAAAAAAADNO6Lzh3Iy64kiBukRIgDZc6FS5yIiUOQAAgD8AAIA/GtUnPQVziT+VhL89QSn3vrH7nj0uZbk8AAAAAAAAAAANK8u9D/O7P+1Smb5cdrO+oDUrvnJ9r70AAAAAAAAAAJqCnbyofaU/lg0ZvgSlBL8+8By9FZZRvQAAAAAAAAAAc+EovsUzCz/7I8M9Njunvs/Lg71thAG8AAAAAAAAAACzDSK9w61Xuj04xjtEUlc4o2dyOxCWQ7cAAIA/AACAP82jK712JyC8GB/vuueIojuArps9WrqDvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOh5bY9Pk+MAWyUTegDjAF0lEdAkF/DGkvboXV9lChoBkdAZ0ljUd7v5WgHTegDaAhHQJB4AS5AhSt1fZQoaAZHQGLnUK7ZnL9oB03oA2gIR0CQfFhFEy+IdX2UKGgGR0Bi705U96kZaAdN6ANoCEdAkIEfOUt7KXV9lChoBkdAZDS8/2TPjWgHTegDaAhHQJCNvJIUahp1fZQoaAZHQGMvS5y2hIxoB03oA2gIR0CQkUjABT4tdX2UKGgGR0BlKHUH6dlNaAdN6ANoCEdAkJGLi++M63V9lChoBkdAaMSdp7CzkmgHTegDaAhHQJCR06ZH/cZ1fZQoaAZHQGcoM1CPZIxoB03oA2gIR0CQlaKYAsCldX2UKGgGR0BUWSI+GGmDaAdLo2gIR0CQm2ZIQOFydX2UKGgGR0BlIFX3g1m8aAdN6ANoCEdAkJvSqdYnv3V9lChoBkdATWnpnpSrHWgHS7JoCEdAkJvrsWweNnV9lChoBkdAZH3l/6O5rmgHTegDaAhHQJCdplK9PDZ1fZQoaAZHQGOjUI9kjHJoB03oA2gIR0CQnuhzeXRgdX2UKGgGR0BmBPW8RL9NaAdN6ANoCEdAkJ+2XPZ7HHV9lChoBkdAaYruQ6p5vGgHTegDaAhHQJCida8pTdd1fZQoaAZHQFPj3kgfU4JoB0u5aAhHQJCjphoduHh1fZQoaAZHQEnTSMtK7I1oB0uKaAhHQJCkoCQtBfN1fZQoaAZHQGJqkpiI+GJoB03oA2gIR0CQpT8NhE0BdX2UKGgGR0BpRirDIikgaAdN6ANoCEdAkKY+hCdBjXV9lChoBkdAYjneUpuuR2gHTegDaAhHQJCofHhjvux1fZQoaAZHQFEsQbMotthoB0uwaAhHQJCp99+gDih1fZQoaAZHQGRmaHj6vaFoB03oA2gIR0CQqk3iaRZEdX2UKGgGR0BsGnezlcQiaAdNcgNoCEdAkL6/io86m3V9lChoBkdAZtCHwgDA8GgHTegDaAhHQJC/nLIPsiV1fZQoaAZHQGelc6/7BO5oB03oA2gIR0CQ1TPk7wKCdX2UKGgGR0BpEY+pwS8KaAdN6ANoCEdAkNh4sZpBX3V9lChoBkdAZYLUJfICEGgHTegDaAhHQJDbtByCFsZ1fZQoaAZHQF3tnP3SKFZoB03oA2gIR0CQ4MXWe6I4dX2UKGgGR0BmWErqdH2AaAdN6ANoCEdAkOE5w4sEq3V9lChoBkdAZWbDXvphW2gHTegDaAhHQJDjKyPdVNp1fZQoaAZHQER/qv/zasZoB0uXaAhHQJDjZ9c8klh1fZQoaAZHQGWV3/o7muFoB03oA2gIR0CQ5YLR8c+8dX2UKGgGR0Bkt0t9QXQ/aAdN6ANoCEdAkOny9Iwud3V9lChoBkdAYbYjfNzKcWgHTegDaAhHQJDq+JQ+EAZ1fZQoaAZHQGLHOnMt9QZoB03oA2gIR0CQ6609hZyNdX2UKGgGR0BlgohQm/nGaAdN6ANoCEdAkOzLJbMX8HV9lChoBkdAYdeFC9h7V2gHTegDaAhHQJDvA/5ckdF1fZQoaAZHQGbPgg5imVJoB03oA2gIR0CQ8KeIEbHZdX2UKGgGR0Bg+DErGza9aAdN6ANoCEdAkPEHpwCKaXV9lChoBkdAQ/Hmig00nGgHS7ZoCEdAkQgnJxNqQHV9lChoBkdAY/C2P1ct5GgHTegDaAhHQJEIY/8l5W11fZQoaAZHQGHMz06HTJBoB03oA2gIR0CRCVK5CngpdX2UKGgGR0BlRoCbMHKPaAdN6ANoCEdAkRzwKrq+rXV9lChoBkdAZDO/RmbsnmgHTegDaAhHQJEgpRpDeCV1fZQoaAZHQGIcd5prULFoB03oA2gIR0CRK41TBInSdX2UKGgGR0BotpIWgvlEaAdN6ANoCEdAkSwj4xk/bHV9lChoBkdAYTNKZlWfb2gHTegDaAhHQJEvjWZqmCR1fZQoaAZHQGYdh42S+xpoB03oA2gIR0CRL+h8YyfudX2UKGgGR0BjZnaL4vexaAdN6ANoCEdAkTMmWdEsrnV9lChoBkdAYtIMyad+X2gHTegDaAhHQJE6R0nw5Np1fZQoaAZHQGNjFNUOuq5oB03oA2gIR0CRO3lVLi++dX2UKGgGR0BAE5T6zmfXaAdLuGgIR0CRPGQ2MsH0dX2UKGgGR0BjcDwe/5+IaAdN6ANoCEdAkT17depn6HV9lChoBkdAZR7jbSJCSmgHTegDaAhHQJFAJpCa7Vd1fZQoaAZHQGhwPkiliz9oB03oA2gIR0CRQe5TqB3BdX2UKGgGR0BhhgSHuZ1FaAdN6ANoCEdAkUJU7bL2YnV9lChoBkdAZR0bT+ee4GgHTegDaAhHQJFW2o73fyh1fZQoaAZHQGa5htcfNiZoB03oA2gIR0CRVxvlU6xPdX2UKGgGR0Bi3t6w+t8vaAdN6ANoCEdAkVgU5p8F6nV9lChoBkdAYboep4rz5GgHTegDaAhHQJFtJhCtzS11fZQoaAZHQGIyy6DoQnRoB03oA2gIR0CRcN0JF9a2dX2UKGgGR0BnLJuZTho/aAdN6ANoCEdAkXmIRRMviHV9lChoBkdAYqQu3c580GgHTegDaAhHQJF5/nW8RL91fZQoaAZHQGY9b5Ec81ZoB03oA2gIR0CRfE3PAwfydX2UKGgGR0BlWPUSZjQRaAdN6ANoCEdAkX55Pdl/Y3V9lChoBkdAUA51gYxcmmgHS6BoCEdAkYE9uUD+znV9lChoBkdAXykFs54nnmgHTegDaAhHQJGC7grH2h91fZQoaAZHQGPzY6XBxgloB03oA2gIR0CRg+iX6ZYxdX2UKGgGR0BoIj1TR6WxaAdN6ANoCEdAkYSnIlt0m3V9lChoBkdAYufB5X2du2gHTegDaAhHQJGFlchTwUh1fZQoaAZHQFGKsS00FbFoB0vKaAhHQJGFq9US7Gx1fZQoaAZHQGba2d/axotoB03oA2gIR0CRh7lNlAeJdX2UKGgGR0BkzISteUpvaAdN6ANoCEdAkYk4CU5dW3V9lChoBkdAZgtTpgTh52gHTegDaAhHQJGJlJ4B3id1fZQoaAZHQE8r4QjD8+BoB0uvaAhHQJGKW7EpAlh1fZQoaAZHQGP4h7E5yU9oB03oA2gIR0CRjA5Xlr/LdX2UKGgGR0BCZt3np0OmaAdLxWgIR0CRjBh4t6HCdX2UKGgGR0BgToe7tiQUaAdN6ANoCEdAkYw/UvwmV3V9lChoBkdAZs6exwAEMmgHTegDaAhHQJGg+dYnv2J1fZQoaAZHQGWU4ffXPJJoB03oA2gIR0CRsWGs3hn8dX2UKGgGR0BojhAnlXA/aAdN6ANoCEdAkbSUNSZSenV9lChoBkdAU0Jzkp7TlWgHS65oCEdAkbqN7OVxCXV9lChoBkdAZz91vES/TWgHTegDaAhHQJG9dEhJRO11fZQoaAZHQEyS/JNj9XNoB0uzaAhHQJG+CC04R291fZQoaAZHQGT7SeqaPS5oB03oA2gIR0CRwgsGgSOBdX2UKGgGR0BktX3i704BaAdN6ANoCEdAkcTfUWl/IHV9lChoBkdAKfVRk3CKrWgHS9BoCEdAkceVLrX18XV9lChoBkdAZMLu5z5oG2gHTegDaAhHQJHIsulGgBd1fZQoaAZHQGfHtnPE87poB03oA2gIR0CRygVgQYk3dX2UKGgGR0BiNi86FM7EaAdN6ANoCEdAkcokZrHlwXV9lChoBkdAQxFA/s3Q2WgHS8RoCEdAkcxUIsyzonV9lChoBkdAZSLSeiBXjmgHTegDaAhHQJHM/tQbdad1fZQoaAZHQGDOoAXEZR9oB03oA2gIR0CRzwaVlf7adX2UKGgGR0BmuSlDWsijaAdN6ANoCEdAkc+NsenyeHV9lChoBkdAYulHn2ZiNWgHTegDaAhHQJHQw7EHdGl1fZQoaAZHQGEx6RZEDyRoB03oA2gIR0CR0xLHdXT3dX2UKGgGR0BnDg/iYLLIaAdN6ANoCEdAkdMhuGbkO3V9lChoBkdAZGQTFl05l2gHTegDaAhHQJHTWYfGMn91fZQoaAZHQGP4fxDst05oB03oA2gIR0CR1FJOnEVGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d27abcec748a6a29fa1da74f0fa958720cb5c011cc1c57b3ce3fd349a714b71
|
3 |
+
size 148063
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x781dfe6d8430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781dfe6d84c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781dfe6d8550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781dfe6d85e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x781dfe6d8670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x781dfe6d8700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x781dfe6d8790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781dfe6d8820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x781dfe6d88b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781dfe6d8940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781dfe6d89d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x781dfe6d8a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x781dfe86bb40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1715341823358523537,
|
30 |
+
"learning_rate": 0.001,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM8hr0UroO6iFBOuwMvgTjblTU7AhngOQAAgD8AAIA/miEqvMMtULp0STE3f7QGti6IfzuTR0G2AACAPwAAgD9mRvE7hLOuPR0sVL15jma+meAuvaiT/DwAAAAAAAAAANC7mz6hyDU/BudmvmYkAL823ts+MtZ6vgAAAAAAAAAAZmB7vXzbNj2KGO49ElFfvmf4Oz3EgwS+AAAAAAAAAACaYQ07dwZ0Pu093b3Vc5a+GgZXvdCAF7wAAAAAAAAAAHNyAr49PHo/5lZfvoq0+74qJw2+F1+zPAAAAAAAAAAA2ibRvSkAWby2bC49jFyAPJ01jD3HX7M9AACAPwAAgD+6jV0+DWiGPv7Cwr40HH2+WkNZvI/GDb4AAAAAAAAAADNO6Lzh3Iy64kiBukRIgDZc6FS5yIiUOQAAgD8AAIA/GtUnPQVziT+VhL89QSn3vrH7nj0uZbk8AAAAAAAAAAANK8u9D/O7P+1Smb5cdrO+oDUrvnJ9r70AAAAAAAAAAJqCnbyofaU/lg0ZvgSlBL8+8By9FZZRvQAAAAAAAAAAc+EovsUzCz/7I8M9Njunvs/Lg71thAG8AAAAAAAAAACzDSK9w61Xuj04xjtEUlc4o2dyOxCWQ7cAAIA/AACAP82jK712JyC8GB/vuueIojuArps9WrqDvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOh5bY9Pk+MAWyUTegDjAF0lEdAkF/DGkvboXV9lChoBkdAZ0ljUd7v5WgHTegDaAhHQJB4AS5AhSt1fZQoaAZHQGLnUK7ZnL9oB03oA2gIR0CQfFhFEy+IdX2UKGgGR0Bi705U96kZaAdN6ANoCEdAkIEfOUt7KXV9lChoBkdAZDS8/2TPjWgHTegDaAhHQJCNvJIUahp1fZQoaAZHQGMvS5y2hIxoB03oA2gIR0CQkUjABT4tdX2UKGgGR0BlKHUH6dlNaAdN6ANoCEdAkJGLi++M63V9lChoBkdAaMSdp7CzkmgHTegDaAhHQJCR06ZH/cZ1fZQoaAZHQGcoM1CPZIxoB03oA2gIR0CQlaKYAsCldX2UKGgGR0BUWSI+GGmDaAdLo2gIR0CQm2ZIQOFydX2UKGgGR0BlIFX3g1m8aAdN6ANoCEdAkJvSqdYnv3V9lChoBkdATWnpnpSrHWgHS7JoCEdAkJvrsWweNnV9lChoBkdAZH3l/6O5rmgHTegDaAhHQJCdplK9PDZ1fZQoaAZHQGOjUI9kjHJoB03oA2gIR0CQnuhzeXRgdX2UKGgGR0BmBPW8RL9NaAdN6ANoCEdAkJ+2XPZ7HHV9lChoBkdAaYruQ6p5vGgHTegDaAhHQJCida8pTdd1fZQoaAZHQFPj3kgfU4JoB0u5aAhHQJCjphoduHh1fZQoaAZHQEnTSMtK7I1oB0uKaAhHQJCkoCQtBfN1fZQoaAZHQGJqkpiI+GJoB03oA2gIR0CQpT8NhE0BdX2UKGgGR0BpRirDIikgaAdN6ANoCEdAkKY+hCdBjXV9lChoBkdAYjneUpuuR2gHTegDaAhHQJCofHhjvux1fZQoaAZHQFEsQbMotthoB0uwaAhHQJCp99+gDih1fZQoaAZHQGRmaHj6vaFoB03oA2gIR0CQqk3iaRZEdX2UKGgGR0BsGnezlcQiaAdNcgNoCEdAkL6/io86m3V9lChoBkdAZtCHwgDA8GgHTegDaAhHQJC/nLIPsiV1fZQoaAZHQGelc6/7BO5oB03oA2gIR0CQ1TPk7wKCdX2UKGgGR0BpEY+pwS8KaAdN6ANoCEdAkNh4sZpBX3V9lChoBkdAZYLUJfICEGgHTegDaAhHQJDbtByCFsZ1fZQoaAZHQF3tnP3SKFZoB03oA2gIR0CQ4MXWe6I4dX2UKGgGR0BmWErqdH2AaAdN6ANoCEdAkOE5w4sEq3V9lChoBkdAZWbDXvphW2gHTegDaAhHQJDjKyPdVNp1fZQoaAZHQER/qv/zasZoB0uXaAhHQJDjZ9c8klh1fZQoaAZHQGWV3/o7muFoB03oA2gIR0CQ5YLR8c+8dX2UKGgGR0Bkt0t9QXQ/aAdN6ANoCEdAkOny9Iwud3V9lChoBkdAYbYjfNzKcWgHTegDaAhHQJDq+JQ+EAZ1fZQoaAZHQGLHOnMt9QZoB03oA2gIR0CQ6609hZyNdX2UKGgGR0BlgohQm/nGaAdN6ANoCEdAkOzLJbMX8HV9lChoBkdAYdeFC9h7V2gHTegDaAhHQJDvA/5ckdF1fZQoaAZHQGbPgg5imVJoB03oA2gIR0CQ8KeIEbHZdX2UKGgGR0Bg+DErGza9aAdN6ANoCEdAkPEHpwCKaXV9lChoBkdAQ/Hmig00nGgHS7ZoCEdAkQgnJxNqQHV9lChoBkdAY/C2P1ct5GgHTegDaAhHQJEIY/8l5W11fZQoaAZHQGHMz06HTJBoB03oA2gIR0CRCVK5CngpdX2UKGgGR0BlRoCbMHKPaAdN6ANoCEdAkRzwKrq+rXV9lChoBkdAZDO/RmbsnmgHTegDaAhHQJEgpRpDeCV1fZQoaAZHQGIcd5prULFoB03oA2gIR0CRK41TBInSdX2UKGgGR0BotpIWgvlEaAdN6ANoCEdAkSwj4xk/bHV9lChoBkdAYTNKZlWfb2gHTegDaAhHQJEvjWZqmCR1fZQoaAZHQGYdh42S+xpoB03oA2gIR0CRL+h8YyfudX2UKGgGR0BjZnaL4vexaAdN6ANoCEdAkTMmWdEsrnV9lChoBkdAYtIMyad+X2gHTegDaAhHQJE6R0nw5Np1fZQoaAZHQGNjFNUOuq5oB03oA2gIR0CRO3lVLi++dX2UKGgGR0BAE5T6zmfXaAdLuGgIR0CRPGQ2MsH0dX2UKGgGR0BjcDwe/5+IaAdN6ANoCEdAkT17depn6HV9lChoBkdAZR7jbSJCSmgHTegDaAhHQJFAJpCa7Vd1fZQoaAZHQGhwPkiliz9oB03oA2gIR0CRQe5TqB3BdX2UKGgGR0BhhgSHuZ1FaAdN6ANoCEdAkUJU7bL2YnV9lChoBkdAZR0bT+ee4GgHTegDaAhHQJFW2o73fyh1fZQoaAZHQGa5htcfNiZoB03oA2gIR0CRVxvlU6xPdX2UKGgGR0Bi3t6w+t8vaAdN6ANoCEdAkVgU5p8F6nV9lChoBkdAYboep4rz5GgHTegDaAhHQJFtJhCtzS11fZQoaAZHQGIyy6DoQnRoB03oA2gIR0CRcN0JF9a2dX2UKGgGR0BnLJuZTho/aAdN6ANoCEdAkXmIRRMviHV9lChoBkdAYqQu3c580GgHTegDaAhHQJF5/nW8RL91fZQoaAZHQGY9b5Ec81ZoB03oA2gIR0CRfE3PAwfydX2UKGgGR0BlWPUSZjQRaAdN6ANoCEdAkX55Pdl/Y3V9lChoBkdAUA51gYxcmmgHS6BoCEdAkYE9uUD+znV9lChoBkdAXykFs54nnmgHTegDaAhHQJGC7grH2h91fZQoaAZHQGPzY6XBxgloB03oA2gIR0CRg+iX6ZYxdX2UKGgGR0BoIj1TR6WxaAdN6ANoCEdAkYSnIlt0m3V9lChoBkdAYufB5X2du2gHTegDaAhHQJGFlchTwUh1fZQoaAZHQFGKsS00FbFoB0vKaAhHQJGFq9US7Gx1fZQoaAZHQGba2d/axotoB03oA2gIR0CRh7lNlAeJdX2UKGgGR0BkzISteUpvaAdN6ANoCEdAkYk4CU5dW3V9lChoBkdAZgtTpgTh52gHTegDaAhHQJGJlJ4B3id1fZQoaAZHQE8r4QjD8+BoB0uvaAhHQJGKW7EpAlh1fZQoaAZHQGP4h7E5yU9oB03oA2gIR0CRjA5Xlr/LdX2UKGgGR0BCZt3np0OmaAdLxWgIR0CRjBh4t6HCdX2UKGgGR0BgToe7tiQUaAdN6ANoCEdAkYw/UvwmV3V9lChoBkdAZs6exwAEMmgHTegDaAhHQJGg+dYnv2J1fZQoaAZHQGWU4ffXPJJoB03oA2gIR0CRsWGs3hn8dX2UKGgGR0BojhAnlXA/aAdN6ANoCEdAkbSUNSZSenV9lChoBkdAU0Jzkp7TlWgHS65oCEdAkbqN7OVxCXV9lChoBkdAZz91vES/TWgHTegDaAhHQJG9dEhJRO11fZQoaAZHQEyS/JNj9XNoB0uzaAhHQJG+CC04R291fZQoaAZHQGT7SeqaPS5oB03oA2gIR0CRwgsGgSOBdX2UKGgGR0BktX3i704BaAdN6ANoCEdAkcTfUWl/IHV9lChoBkdAKfVRk3CKrWgHS9BoCEdAkceVLrX18XV9lChoBkdAZMLu5z5oG2gHTegDaAhHQJHIsulGgBd1fZQoaAZHQGfHtnPE87poB03oA2gIR0CRygVgQYk3dX2UKGgGR0BiNi86FM7EaAdN6ANoCEdAkcokZrHlwXV9lChoBkdAQxFA/s3Q2WgHS8RoCEdAkcxUIsyzonV9lChoBkdAZSLSeiBXjmgHTegDaAhHQJHM/tQbdad1fZQoaAZHQGDOoAXEZR9oB03oA2gIR0CRzwaVlf7adX2UKGgGR0BmuSlDWsijaAdN6ANoCEdAkc+NsenyeHV9lChoBkdAYulHn2ZiNWgHTegDaAhHQJHQw7EHdGl1fZQoaAZHQGEx6RZEDyRoB03oA2gIR0CR0xLHdXT3dX2UKGgGR0BnDg/iYLLIaAdN6ANoCEdAkdMhuGbkO3V9lChoBkdAZGQTFl05l2gHTegDaAhHQJHTWYfGMn91fZQoaAZHQGP4fxDst05oB03oA2gIR0CR1FJOnEVGdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb16e48909cdf33b1497e9418166912931b3a872f5561ade27b4547459ad4fe4
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a1554e675cd47b0ca269b43dcb9a74e3b2cbaa458010d90f4cd710f56a77f80
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 275.6764819, "std_reward": 14.678876522393335, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-10T12:14:13.462110"}
|