File size: 33,153 Bytes
57a92c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "a4090294-3349-4815-96f4-98010b657359",
"kernelId": ""
}
},
"source": [
"# Paperspace Gradient: PyTorch Quick Start\n",
"Last modified: Nov 18th 2021"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "4936c59a-8535-43cf-a527-e9323b2b658e",
"kernelId": ""
}
},
"source": [
"## Purpose and intended audience\n",
"\n",
"This Quick Start tutorial demonstrates PyTorch usage in a Gradient Notebook. It is aimed at users who are relatviely new to PyTorch, although you will need to be familiar with Python to understand PyTorch code.\n",
"\n",
"We use PyTorch to\n",
"\n",
"- Build a neural network that classifies FashionMNIST images\n",
"- Train and evaluate the network\n",
"- Save the model\n",
"- Perform predictions\n",
"\n",
"followed by some next steps that you can take to proceed with using Gradient.\n",
"\n",
"The material is based on the original [PyTorch Quick Start](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html).\n",
"\n",
"See the end of the notebook for the original copyright notice."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "a55c3131-9437-483d-9c19-a165fbf8b6d4",
"kernelId": ""
}
},
"source": [
"## Check that you are on a GPU instance\n",
"\n",
"The notebook is designed to run on a Gradient GPU instance (as opposed to a CPU-only instance). The instance type, e.g., A4000, can be seen by clicking on the instance icon on the left-hand navigation bar in the Gradient Notebook interface. It will say if it is CPU or GPU.\n",
"\n",
"\n",
"\n",
"The *Creating models* section below also determines whether or not a GPU is available for us to use.\n",
"\n",
"If the instance type is CPU, you can change it by clicking *Stop Instance*, then the instance type displayed to get a drop-down list. Select a GPU instance and start up the Notebook again.\n",
"\n",
"For help with instances, see the Gradient documentation on [instance types](https://docs.paperspace.com/gradient/more/instance-types) or [starting a Gradient Notebook](https://docs.paperspace.com/gradient/explore-train-deploy/notebooks)."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "cd28b5e4-862f-4fc5-b02d-2335345647fa",
"kernelId": ""
}
},
"source": [
"## Add ipywidgets\n",
"This is temporary to enable PyTorch to work on Gradient notebooks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 1,
"id": "86ef45c8-089d-4d76-b919-99bccbd7edbb",
"kernelId": "",
"source_hidden": false
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Collecting ipywidgets\n",
" Downloading ipywidgets-7.6.5-py2.py3-none-any.whl (121 kB)\n",
"\u001b[K |████████████████████████████████| 121 kB 26.7 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: ipykernel>=4.5.1 in /opt/conda/lib/python3.8/site-packages (from ipywidgets) (6.4.1)\n",
"Requirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets) (5.1.3)\n",
"Collecting jupyterlab-widgets>=1.0.0\n",
" Downloading jupyterlab_widgets-1.0.2-py3-none-any.whl (243 kB)\n",
"\u001b[K |████████████████████████████████| 243 kB 26.2 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: traitlets>=4.3.1 in /opt/conda/lib/python3.8/site-packages (from ipywidgets) (5.1.0)\n",
"Requirement already satisfied: ipython-genutils~=0.2.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets) (0.2.0)\n",
"Requirement already satisfied: ipython>=4.0.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets) (7.28.0)\n",
"Collecting widgetsnbextension~=3.5.0\n",
" Downloading widgetsnbextension-3.5.2-py2.py3-none-any.whl (1.6 MB)\n",
"\u001b[K |████████████████████████████████| 1.6 MB 27.8 MB/s eta 0:00:01\n",
"\u001b[?25hRequirement already satisfied: jupyter-client<8.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (7.0.6)\n",
"Requirement already satisfied: debugpy<2.0,>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (1.5.0)\n",
"Requirement already satisfied: matplotlib-inline<0.2.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (0.1.3)\n",
"Requirement already satisfied: tornado<7.0,>=4.2 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (6.1)\n",
"Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (58.2.0)\n",
"Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.7.5)\n",
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (3.0.20)\n",
"Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (5.1.0)\n",
"Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (4.8.0)\n",
"Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (2.10.0)\n",
"Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.18.0)\n",
"Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.2.0)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets) (0.8.2)\n",
"Requirement already satisfied: nest-asyncio>=1.5 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (1.5.1)\n",
"Requirement already satisfied: jupyter-core>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (4.8.1)\n",
"Requirement already satisfied: entrypoints in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (0.3)\n",
"Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (22.3.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (2.8.2)\n",
"Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /opt/conda/lib/python3.8/site-packages (from nbformat>=4.2.0->ipywidgets) (4.0.1)\n",
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /opt/conda/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets) (0.18.0)\n",
"Requirement already satisfied: attrs>=17.4.0 in /opt/conda/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets) (21.2.0)\n",
"Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets) (0.7.0)\n",
"Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=4.0.0->ipywidgets) (0.2.5)\n",
"Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.8/site-packages (from python-dateutil>=2.1->jupyter-client<8.0->ipykernel>=4.5.1->ipywidgets) (1.16.0)\n",
"Requirement already satisfied: notebook>=4.4.1 in /opt/conda/lib/python3.8/site-packages (from widgetsnbextension~=3.5.0->ipywidgets) (6.4.1)\n",
"Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (21.1.0)\n",
"Requirement already satisfied: nbconvert in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (6.2.0)\n",
"Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.12.1)\n",
"Requirement already satisfied: jinja2 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (3.0.1)\n",
"Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.11.0)\n",
"Requirement already satisfied: Send2Trash>=1.5.0 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.8.0)\n",
"Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.14.6)\n",
"Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.20)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.0.1)\n",
"Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.5.4)\n",
"Requirement already satisfied: bleach in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (4.1.0)\n",
"Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.5.0)\n",
"Requirement already satisfied: testpath in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.5.0)\n",
"Requirement already satisfied: mistune<2,>=0.8.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.8.4)\n",
"Requirement already satisfied: defusedxml in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.7.1)\n",
"Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.1.2)\n",
"Requirement already satisfied: webencodings in /opt/conda/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.5.1)\n",
"Requirement already satisfied: packaging in /opt/conda/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (21.0)\n",
"Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging->bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.4.7)\n",
"Installing collected packages: widgetsnbextension, jupyterlab-widgets, ipywidgets\n",
"Successfully installed ipywidgets-7.6.5 jupyterlab-widgets-1.0.2 widgetsnbextension-3.5.2\n",
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n"
]
}
],
"source": [
"!pip install ipywidgets"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "28402a66-a8c4-4672-9592-cc530b58d439",
"kernelId": ""
}
},
"source": [
"## Working with data\n",
"\n",
"PyTorch has two [primitives to work with data](https://pytorch.org/docs/stable/data.html):\n",
"``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``.\n",
"``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around\n",
"the ``Dataset``."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 2,
"id": "2bab3caa-e156-4635-bc21-53031ebea60d",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import torch\n",
"from torch import nn\n",
"from torch.utils.data import DataLoader\n",
"from torchvision import datasets\n",
"from torchvision.transforms import ToTensor, Lambda, Compose"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "0dfb0116-56cd-4795-bc5e-79baad627726",
"kernelId": ""
}
},
"source": [
"PyTorch offers domain-specific libraries such as [TorchText](https://pytorch.org/text/stable/index.html),\n",
"[TorchVision](https://pytorch.org/vision/stable/index.html), and [TorchAudio](https://pytorch.org/audio/stable/index.html),\n",
"all of which include datasets. For this tutorial, we will be using a TorchVision dataset.\n",
"\n",
"The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like\n",
"CIFAR, COCO ([full list here](https://pytorch.org/vision/stable/datasets.html)). In this tutorial, we\n",
"use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and\n",
"``target_transform`` to modify the samples and labels respectively."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 3,
"id": "631deddf-30f0-45f1-84ab-e5f4c510c500",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# Download training data from open datasets\n",
"training_data = datasets.FashionMNIST(\n",
" root=\"data\",\n",
" train=True,\n",
" download=True,\n",
" transform=ToTensor(),\n",
")\n",
"\n",
"# Download test data from open datasets\n",
"test_data = datasets.FashionMNIST(\n",
" root=\"data\",\n",
" train=False,\n",
" download=True,\n",
" transform=ToTensor(),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "0ace6ebf-b493-4b75-9bfa-dc48bc676b21",
"kernelId": ""
}
},
"source": [
"We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports\n",
"automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e., each element\n",
"in the dataloader iterable will return a batch of 64 features and labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 4,
"id": "8e65f970-dce8-460c-b5f2-9cbee0c14900",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])\n",
"Shape of y: torch.Size([64]) torch.int64\n"
]
}
],
"source": [
"batch_size = 64\n",
"\n",
"# Create data loaders\n",
"train_dataloader = DataLoader(training_data, batch_size=batch_size)\n",
"test_dataloader = DataLoader(test_data, batch_size=batch_size)\n",
"\n",
"for X, y in test_dataloader:\n",
" print(\"Shape of X [N, C, H, W]: \", X.shape)\n",
" print(\"Shape of y: \", y.shape, y.dtype)\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "f9d1b1f7-0850-4676-93b6-902f78be237d",
"kernelId": ""
}
},
"source": [
"Read more about [loading data in PyTorch](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "d9cc95fe-194b-4a6f-b01d-91510dfcfb00",
"kernelId": ""
}
},
"source": [
"## Creating models, including GPU\n",
"\n",
"To define a neural network in PyTorch, we create a class that inherits\n",
"from [nn.Module](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). We define the layers of the network\n",
"in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate\n",
"operations in the neural network, we move it to the GPU if available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 5,
"id": "d58d5484-8ca0-4400-91c5-d0e71cf89c12",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cuda device\n",
"NeuralNetwork(\n",
" (flatten): Flatten(start_dim=1, end_dim=-1)\n",
" (linear_relu_stack): Sequential(\n",
" (0): Linear(in_features=784, out_features=512, bias=True)\n",
" (1): ReLU()\n",
" (2): Linear(in_features=512, out_features=512, bias=True)\n",
" (3): ReLU()\n",
" (4): Linear(in_features=512, out_features=10, bias=True)\n",
" )\n",
")\n"
]
}
],
"source": [
"# Get cpu or gpu device for training\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"print(\"Using {} device\".format(device))\n",
"\n",
"# Define model\n",
"class NeuralNetwork(nn.Module):\n",
" def __init__(self):\n",
" super(NeuralNetwork, self).__init__()\n",
" self.flatten = nn.Flatten()\n",
" self.linear_relu_stack = nn.Sequential(\n",
" nn.Linear(28*28, 512),\n",
" nn.ReLU(),\n",
" nn.Linear(512, 512),\n",
" nn.ReLU(),\n",
" nn.Linear(512, 10)\n",
" )\n",
"\n",
" def forward(self, x):\n",
" x = self.flatten(x)\n",
" logits = self.linear_relu_stack(x)\n",
" return logits\n",
"\n",
"model = NeuralNetwork().to(device)\n",
"print(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "7ee591d8-e529-481b-8107-e84454893bd2",
"kernelId": ""
}
},
"source": [
"Read more about [building neural networks in PyTorch](https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "b6db5b4f-80b9-4f9e-8feb-76d0ef1e346f",
"kernelId": ""
}
},
"source": [
"## Optimizing the model parameters\n",
"\n",
"To train a model, we need a [loss function](https://pytorch.org/docs/stable/nn.html#loss-functions)\n",
"and an [optimizer](https://pytorch.org/docs/stable/optim.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 6,
"id": "8c22a532-16e0-440d-888e-d879e5f53c7c",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"loss_fn = nn.CrossEntropyLoss()\n",
"optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "5efe3473-ecf7-411c-a13b-ba54f5c257a6",
"kernelId": ""
}
},
"source": [
"In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and\n",
"backpropagates the prediction error to adjust the model's parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 7,
"id": "3d1af6c1-299b-4572-902a-c5e52ce0a7d2",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"def train(dataloader, model, loss_fn, optimizer):\n",
" size = len(dataloader.dataset)\n",
" model.train()\n",
" for batch, (X, y) in enumerate(dataloader):\n",
" X, y = X.to(device), y.to(device)\n",
"\n",
" # Compute prediction error\n",
" pred = model(X)\n",
" loss = loss_fn(pred, y)\n",
"\n",
" # Backpropagation\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" if batch % 100 == 0:\n",
" loss, current = loss.item(), batch * len(X)\n",
" print(f\"loss: {loss:>7f} [{current:>5d}/{size:>5d}]\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "f86e28f0-bb94-4443-a673-f6d3461d4e94",
"kernelId": ""
}
},
"source": [
"We also check the model's performance against the test dataset to ensure it is learning."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 8,
"id": "112d81e3-cdf8-4b1e-afca-6344be54f5e5",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"def test(dataloader, model, loss_fn):\n",
" size = len(dataloader.dataset)\n",
" num_batches = len(dataloader)\n",
" model.eval()\n",
" test_loss, correct = 0, 0\n",
" with torch.no_grad():\n",
" for X, y in dataloader:\n",
" X, y = X.to(device), y.to(device)\n",
" pred = model(X)\n",
" test_loss += loss_fn(pred, y).item()\n",
" correct += (pred.argmax(1) == y).type(torch.float).sum().item()\n",
" test_loss /= num_batches\n",
" correct /= size\n",
" print(f\"Test Error: \\n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \\n\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "4e366ecc-735f-42dd-b04e-a94816b94fd8",
"kernelId": ""
}
},
"source": [
"The training process is conducted over several iterations (*epochs*). During each epoch, the model learns\n",
"parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the\n",
"accuracy increase and the loss decrease with every epoch."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 9,
"id": "50bf09d9-1318-43ef-92aa-6ee308fcafa1",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1\n",
"-------------------------------\n",
"loss: 2.303235 [ 0/60000]\n",
"loss: 2.289679 [ 6400/60000]\n",
"loss: 2.273108 [12800/60000]\n",
"loss: 2.267172 [19200/60000]\n",
"loss: 2.248831 [25600/60000]\n",
"loss: 2.225987 [32000/60000]\n",
"loss: 2.227034 [38400/60000]\n",
"loss: 2.194261 [44800/60000]\n",
"loss: 2.190697 [51200/60000]\n",
"loss: 2.161292 [57600/60000]\n",
"Test Error: \n",
" Accuracy: 53.8%, Avg loss: 2.155593 \n",
"\n",
"Epoch 2\n",
"-------------------------------\n",
"loss: 2.169532 [ 0/60000]\n",
"loss: 2.153734 [ 6400/60000]\n",
"loss: 2.097200 [12800/60000]\n",
"loss: 2.113983 [19200/60000]\n",
"loss: 2.057467 [25600/60000]\n",
"loss: 2.015557 [32000/60000]\n",
"loss: 2.031434 [38400/60000]\n",
"loss: 1.952968 [44800/60000]\n",
"loss: 1.957087 [51200/60000]\n",
"loss: 1.897905 [57600/60000]\n",
"Test Error: \n",
" Accuracy: 60.1%, Avg loss: 1.885614 \n",
"\n",
"Epoch 3\n",
"-------------------------------\n",
"loss: 1.924514 [ 0/60000]\n",
"loss: 1.886686 [ 6400/60000]\n",
"loss: 1.767823 [12800/60000]\n",
"loss: 1.810671 [19200/60000]\n",
"loss: 1.700105 [25600/60000]\n",
"loss: 1.668604 [32000/60000]\n",
"loss: 1.677238 [38400/60000]\n",
"loss: 1.577084 [44800/60000]\n",
"loss: 1.603734 [51200/60000]\n",
"loss: 1.514089 [57600/60000]\n",
"Test Error: \n",
" Accuracy: 60.3%, Avg loss: 1.522196 \n",
"\n",
"Epoch 4\n",
"-------------------------------\n",
"loss: 1.592778 [ 0/60000]\n",
"loss: 1.553160 [ 6400/60000]\n",
"loss: 1.404765 [12800/60000]\n",
"loss: 1.476303 [19200/60000]\n",
"loss: 1.357471 [25600/60000]\n",
"loss: 1.362992 [32000/60000]\n",
"loss: 1.364555 [38400/60000]\n",
"loss: 1.289281 [44800/60000]\n",
"loss: 1.328217 [51200/60000]\n",
"loss: 1.238191 [57600/60000]\n",
"Test Error: \n",
" Accuracy: 62.5%, Avg loss: 1.260456 \n",
"\n",
"Epoch 5\n",
"-------------------------------\n",
"loss: 1.338341 [ 0/60000]\n",
"loss: 1.316752 [ 6400/60000]\n",
"loss: 1.157560 [12800/60000]\n",
"loss: 1.258749 [19200/60000]\n",
"loss: 1.131236 [25600/60000]\n",
"loss: 1.164936 [32000/60000]\n",
"loss: 1.173478 [38400/60000]\n",
"loss: 1.111497 [44800/60000]\n",
"loss: 1.156012 [51200/60000]\n",
"loss: 1.079641 [57600/60000]\n",
"Test Error: \n",
" Accuracy: 64.0%, Avg loss: 1.098095 \n",
"\n",
"Done!\n"
]
}
],
"source": [
"epochs = 5\n",
"for t in range(epochs):\n",
" print(f\"Epoch {t+1}\\n-------------------------------\")\n",
" train(train_dataloader, model, loss_fn, optimizer)\n",
" test(test_dataloader, model, loss_fn)\n",
"print(\"Done!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "7bfc0721-ce35-4380-9d90-0f3f17bae210",
"kernelId": ""
}
},
"source": [
"Read more about [Training your model](optimization_tutorial.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "88e2d48b-f1c2-43b0-956d-673d31e777cc",
"kernelId": ""
}
},
"source": [
"## Saving models\n",
"\n",
"A common way to save a model is to serialize the internal state dictionary (containing the model parameters)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 10,
"id": "5674fda2-6f1d-447c-ac05-d21934c7fe6f",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved PyTorch Model State to model.pth\n"
]
}
],
"source": [
"torch.save(model.state_dict(), \"model.pth\")\n",
"print(\"Saved PyTorch Model State to model.pth\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "b1e15431-85cf-4788-aa7f-5c12d77f4ac3",
"kernelId": ""
}
},
"source": [
"## Loading models\n",
"\n",
"The process for loading a model includes re-creating the model structure and loading\n",
"the state dictionary into it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": false,
"execution_count": 11,
"id": "ee2271cf-5092-43ad-afed-b64d2e6aea2c",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = NeuralNetwork()\n",
"model.load_state_dict(torch.load(\"model.pth\"))"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "83cc12b8-fca2-4ea0-91f6-cdd8065d6164",
"kernelId": ""
}
},
"source": [
"This model can now be used to make predictions.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"gradient": {
"editing": true,
"execution_count": 12,
"id": "efed4977-824f-4816-91c0-05f4e10d8b54",
"kernelId": ""
},
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted: \"Ankle boot\", Actual: \"Ankle boot\"\n"
]
}
],
"source": [
"classes = [\n",
" \"T-shirt/top\",\n",
" \"Trouser\",\n",
" \"Pullover\",\n",
" \"Dress\",\n",
" \"Coat\",\n",
" \"Sandal\",\n",
" \"Shirt\",\n",
" \"Sneaker\",\n",
" \"Bag\",\n",
" \"Ankle boot\",\n",
"]\n",
"\n",
"model.eval()\n",
"x, y = test_data[0][0], test_data[0][1]\n",
"with torch.no_grad():\n",
" pred = model(x)\n",
" predicted, actual = classes[pred[0].argmax(0)], classes[y]\n",
" print(f'Predicted: \"{predicted}\", Actual: \"{actual}\"')"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "0b064ce8-bacb-45c2-8ef3-3a45ff7ecd5a",
"kernelId": ""
}
},
"source": [
"Read more about [Saving & Loading your model](saveloadrun_tutorial.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "379b3389-034a-4c17-a742-dd7c6a8281ce",
"kernelId": ""
}
},
"source": [
"## Next steps\n",
"\n",
"To proceed with PyTorch in Gradient, you can:\n",
" \n",
" - Look at other Gradient material, such as the [tutorials](https://docs.paperspace.com/gradient/get-started/tutorials-list), [ML Showcase](https://ml-showcase.paperspace.com), [blog](https://blog.paperspace.com), or [community](https://community.paperspace.com)\n",
" - Try out further [PyTorch tutorials](https://pytorch.org/tutorials/beginner/basics/intro.html)\n",
" - Start writing your own projects, using our [documentation](https://docs.paperspace.com/gradient) when needed\n",
" \n",
"If you get stuck or need help, [contact support](https://support.paperspace.com), and we will be happy to assist.\n",
"\n",
"Good luck!"
]
},
{
"cell_type": "markdown",
"metadata": {
"gradient": {
"editing": false,
"id": "a4d2e55f-6c65-48fe-a9e7-165931791ff2",
"kernelId": ""
}
},
"source": [
"## Original PyTorch copyright notice\n",
"\n",
"© Copyright 2021, PyTorch."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|