File size: 2,589 Bytes
4f0fe02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
language: es
license: afl-3.0
tags:
- generated_from_trainer
- sentiment
- emotion
metrics:
- accuracy
widget:
- text: La vida no merece la pena
  example_title: Ejemplo 1
- text: Para vivir así lo mejor es estar muerto
  example_title: Ejemplo 2
- text: me siento triste por no poder viajar
  example_title: Ejemplo 3
- text: Quiero terminar con todo
  example_title: Ejemplo 4
- text: Disfruto de la vista
  example_title: Ejemplo 5
base_model: mrm8488/electricidad-small-discriminator
model-index:
- name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0458
- Accuracy: 0.9916 
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Validation Loss | Accuracy |
|:-------------:|:-----:|:---------------:|:--------:|
| 0.161100       | 1.0   | 0.133057         | 0.952718 |
| 0.134500        | 2.0   | 0.110966       | 0.960804 |
| 0.108500        | 3.0   | 0.086417      | 0.970835 |
| 0.099400        | 4.0   | 0.073618      | 0.974856 |
| 0.090500       | 5.0   | 0.065231       | 0.979629 |
| 0.080700       | 6.0   | 0.060849    | 0.982324   |
| 0.069200        | 7.0   | 0.054718       | 0.986125 |
| 0.060400        | 8.0   | 0.051153        | 0.985948 |
| 0.048200        | 9.0   | 0.045747       | 0.989748 |
| 0.045500        | 10.0   | 0.049992        | 0.988069 |
| 0.043400        | 11.0   | 0.046325         | 0.990234 |
| 0.034300        | 12.0   | 0.050746         | 0.989792 |
| 0.032900        | 13.0   | 0.043434       | 0.991737 |
| 0.028400        | 14.0   | 0.045003        | 0.991869 |
| 0.022300        | 15.0   | 0.045819        | 0.991648 |


### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6