julien-c HF staff commited on
Commit
ad8954f
1 Parent(s): 23cdb2d

Fix YAML WER metadata

Browse files

cc

@pierric

Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: {54.6}
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-or
@@ -50,15 +50,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
50
  # Preprocessing the datasets.
51
  # We need to read the aduio files as arrays
52
  def speech_file_to_array_fn(batch):
53
- speech_array, sampling_rate = torchaudio.load(batch["path"])
54
- batch["speech"] = resampler(speech_array).squeeze().numpy()
55
- return batch
56
 
57
  test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
@@ -85,30 +85,30 @@ processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or"
85
  model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
86
  model.to("cuda")
87
 
88
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
89
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
 
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
- speech_array, sampling_rate = torchaudio.load(batch["path"])
96
- batch["speech"] = resampler(speech_array).squeeze().numpy()
97
- return batch
98
 
99
  test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
 
106
- with torch.no_grad():
107
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
109
- pred_ids = torch.argmax(logits, dim=-1)
110
- batch["pred_strings"] = processor.batch_decode(pred_ids)
111
- return batch
112
 
113
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
 
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 54.6
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-or
 
50
  # Preprocessing the datasets.
51
  # We need to read the aduio files as arrays
52
  def speech_file_to_array_fn(batch):
53
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ \treturn batch
56
 
57
  test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
 
85
  model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
86
  model.to("cuda")
87
 
88
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
89
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
 
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
96
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ \treturn batch
98
 
99
  test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
 
106
+ \twith torch.no_grad():
107
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
109
+ \tpred_ids = torch.argmax(logits, dim=-1)
110
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ \treturn batch
112
 
113
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
114