daripaez commited on
Commit
b7a7c3e
1 Parent(s): 2dd6872

Model trained for 2M steps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1417.45 +/- 418.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c2ddebb341a7bc8a5f69561aba65c036391ce2f016dfd667efa7e24fae37009
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc36389b670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc36389b700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc36389b790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc36389b820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc36389b8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc36389b940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc36389b9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc36389ba60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc36389baf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc36389bb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc36389bc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc36389bca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc363896780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674485260989549580,
68
+ "learning_rate": 0.0005,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADjaBD9qAqc/7++avmnNPD6GqLw+kaY6Pu0jvL4Dej6/D6FRP2fVOT98Nks+YeRePu4dC75RPxM/4MlnP7qxB79JTVk/e66+Pk5617669uk+GlzwvgGdRj9P/JQ/kHUXwGpsAD89LaQ+70XqPg/SAj8t8qU/emErv1DW5T4JnwpAKP4bv88tib4MHnA/QO+Iv/VTE77tFcS/hk8DvYkAF79OBxE+4YvZvAx2Fb/zuqo/x2gUv43GkL/D0jQ/Y8Mfv1OyojvYQc6/xeucP4wuLD/iJ/+/PS2kPu9F6j4P0gI/w07JPgW4wT+Jqhi/dS8jP0zcrD55pYy98N+SPlzSM79ErP0+M5xRv0ONJT89Qhw/s1gSvuINBMAwIdY+B/GPv7VytT1/U36/JMPmPsWsQz8Kl6I/NokPwLjfpz5ZnsC/amwAPz0tpD7vReo+D9ICP1+CID+gPK4/rQDAvnqc0z9ZBwE/tX6lPnFONz/bQzO/Nr+EP1ktqL8pnIM/TqxYv1rF9L+JxwQ/mDYAv0eHBT2iWkG/RNiXv32OJz+JAaA/uPKOP8G4779vPHM+esM6P2psAD/8lkfA70XqPg/SAj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD/P9O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGrWfPQAAAADBd+u/AAAAAB+GXrsAAAAAiUznPwAAAADQQFe9AAAAAGco2j8AAAAAAP4DPgAAAABuMgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARrJ2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHJTy7wAAAAAhLf5vwAAAABipro9AAAAAERq6T8AAAAAIBHKvAAAAAAVSeg/AAAAAPd6h70AAAAAQn3+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALyrADYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAWEle8AAAAAAUt/r8AAAAAym+4vQAAAABH7+w/AAAAAKL96T0AAAAAyxjhPwAAAADwV0O9AAAAACQH478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZmC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAk3W2PQAAAAA8TvO/AAAAAJdelT0AAAAAA8XiPwAAAABRLom9AAAAABiu7D8AAAAA8bg0vQAAAABPdey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqYUqgAZKqMAWyUTegDjAF0lEdAqE+ENe+mFnV9lChoBkdAmz+MxbjcVWgHTegDaAhHQKhTWIldC3R1fZQoaAZHQJpwON70Fr5oB03oA2gIR0CoV8FNcnmadX2UKGgGR0Cax4n7pFCtaAdN6ANoCEdAqFiYGOdXk3V9lChoBkdAm4QaJ2t+1GgHTegDaAhHQKhb0DEm6Xl1fZQoaAZHQJVFGiAUcn5oB03oA2gIR0CoX4mDcuandX2UKGgGR0CazfWMCLdfaAdN6ANoCEdAqGOxxxT853V9lChoBkdAm7gWepXIVGgHTegDaAhHQKhkgR5kbxV1fZQoaAZHQJeXpVDKHO9oB03oA2gIR0CoZ61tGd7OdX2UKGgGR0CWZPcuanaWaAdN6ANoCEdAqGtylP8AJnV9lChoBkdAkUrYdQwbl2gHTegDaAhHQKhvq1OTJQt1fZQoaAZHQJX6Hied07toB03oA2gIR0CocIdFfAsTdX2UKGgGR0CS0JK77Kq5aAdN6ANoCEdAqHOq/j81oHV9lChoBkdAkcOSj1wo9mgHTegDaAhHQKh3Yqp97Wx1fZQoaAZHQJDCxzr/sE9oB03oA2gIR0Coe/F67dzodX2UKGgGR0CQaY4j8k2QaAdN6ANoCEdAqHzEzTF2m3V9lChoBkdAkxWOR1X/52gHTegDaAhHQKh/+C9ytFN1fZQoaAZHQJOct+CsfaJoB03oA2gIR0Cog8iosI3SdX2UKGgGR0CUxcVfNRm9aAdN6ANoCEdAqIgDS7Xg+HV9lChoBkdAk4vMQd0aImgHTegDaAhHQKiI1CngpBp1fZQoaAZHQJkMWHRCx/xoB03oA2gIR0Coi/lId2gWdX2UKGgGR0CVrYSHuZ1FaAdN6ANoCEdAqI+v+l0o0HV9lChoBkdAmNJ0EHMUy2gHTegDaAhHQKiT9KgZjx11fZQoaAZHQJIHYkxASnNoB03oA2gIR0ColM1RLsa9dX2UKGgGR0CV99pSJj2BaAdN6ANoCEdAqJgAuVX3g3V9lChoBkdAl8bFjiGWU2gHTegDaAhHQKib0CbtqpN1fZQoaAZHQJYLATEit7toB03oA2gIR0CooBj7ZWaMdX2UKGgGR0CUM+X8wYceaAdN6ANoCEdAqKD2YIBzWHV9lChoBkdAkjeuvllsg2gHTegDaAhHQKikGuL74zt1fZQoaAZHQJFFP6rNnoRoB03oA2gIR0Cop/GozeoDdX2UKGgGR0CTwLUrTYukaAdN6ANoCEdAqKxAUi6g/XV9lChoBkdAk+vsv/R3NmgHTegDaAhHQKitD9LHuJF1fZQoaAZHQJY10n+hoM9oB03oA2gIR0CosC2w/xDtdX2UKGgGR0CUAk2EkB0ZaAdN6ANoCEdAqLPpFNL13HV9lChoBkdAkdddcSoOx2gHTegDaAhHQKi4RAVwgkl1fZQoaAZHQJuNngtOEdxoB03oA2gIR0CouRadtl7MdX2UKGgGR0CVr3w8GLUDaAdN6ANoCEdAqLxF/FzdUXV9lChoBkdAmL8ntv4ub2gHTegDaAhHQKi//0FKTSt1fZQoaAZHQJJdKcvugHxoB03oA2gIR0CoxDnanJkodX2UKGgGR0CZDAbKA8SxaAdN6ANoCEdAqMUJPj4pMHV9lChoBkdAmgp11Oj7AWgHTegDaAhHQKjINI0ZWJd1fZQoaAZHQJbcVDD0lJJoB03oA2gIR0Coy/JbD/EPdX2UKGgGR0CZo78NhE0BaAdN6ANoCEdAqNBH446wMnV9lChoBkdAmnDZBC2MKmgHTegDaAhHQKjRIg/1QIl1fZQoaAZHQJhrdyXD3uhoB03oA2gIR0Co1C3vH93sdX2UKGgGR0CZhs+fywwCaAdN6ANoCEdAqNfezt1IRXV9lChoBkdAkAam5lOGkGgHTegDaAhHQKjcERTS9dx1fZQoaAZHQJjQjRJEpiJoB03oA2gIR0Co3ODq4YrKdX2UKGgGR0CUl91uBMBZaAdN6ANoCEdAqN/3QMQVbnV9lChoBkdAl0HOcUdq+WgHTegDaAhHQKjjp6Q/5cl1fZQoaAZHQJmP9kz41xdoB03oA2gIR0Co5+t1ZDArdX2UKGgGR0CambSy+pOvaAdN6ANoCEdAqOjIlY2bX3V9lChoBkdAmdL1jy4FzWgHTegDaAhHQKjr9sHjZL91fZQoaAZHQJqiUlD4QBhoB03oA2gIR0Co76bojfNzdX2UKGgGR0CX1A2qDK5kaAdN6ANoCEdAqPQERWcSXnV9lChoBkdAmiKlJHy3C2gHTegDaAhHQKj01ZkkKNR1fZQoaAZHQJNJjR3NcGFoB03oA2gIR0Co9/pqZc9odX2UKGgGR0CZSRiOvMbFaAdN6ANoCEdAqPupAD7qIXV9lChoBkdAmZNPpY9xImgHTegDaAhHQKj/3OjZcs11fZQoaAZHQJqQlBgNPP9oB03oA2gIR0CpALOY6XBydX2UKGgGR0Cbfo0b961LaAdN6ANoCEdAqQPitJWeYnV9lChoBkdAmp/9KIznBGgHTegDaAhHQKkHpiMHbAV1fZQoaAZHQJo/L93r2QJoB03oA2gIR0CpC/MCLdeqdX2UKGgGR0CZUMTuOS4faAdN6ANoCEdAqQzTDuSfUXV9lChoBkdAmwWZW/8EV2gHTegDaAhHQKkP+ABkqc51fZQoaAZHQJlVtDF6zE9oB03oA2gIR0CpE797OVxCdX2UKGgGR0CY9Uvkili0aAdN6ANoCEdAqRgKI7/4qXV9lChoBkdAlVosDW9UTGgHTegDaAhHQKkY4t1ZDAt1fZQoaAZHQJizW+pOvdNoB03oA2gIR0CpHAfDDTBqdX2UKGgGR0CZVyek56t1aAdN6ANoCEdAqR/TDdgv13V9lChoBkdAllV+aScLB2gHTegDaAhHQKkkBj/+85F1fZQoaAZHQJtKruv2XcBoB03oA2gIR0CpJNPoePq+dX2UKGgGR0CX29wdKdxyaAdN6ANoCEdAqSgLdk8RtnV9lChoBkdAlfYzUExIrmgHTegDaAhHQKkrzjU/fO51fZQoaAZHQJl3HeJpFkRoB03oA2gIR0CpMCIDoyKvdX2UKGgGR0CbDDPE87p3aAdN6ANoCEdAqTD/3xnWa3V9lChoBkdAmYGTRUm2LGgHTegDaAhHQKk0LNtZV4p1fZQoaAZHQIyXZGYrrgRoB03oA2gIR0CpN/0+1SfldX2UKGgGR0CZrTr9ETg3aAdN6ANoCEdAqTxm2mYShHV9lChoBkdAmtQCYoiLVGgHTegDaAhHQKk9N212JSB1fZQoaAZHQJitVVDKHO9oB03oA2gIR0CpQGfzSThYdX2UKGgGR0CaZVlImPYGaAdN6ANoCEdAqUQpEMLF43V9lChoBkdAlfcRhUipvWgHTegDaAhHQKlIfOXVsk91fZQoaAZHQJned3hXKbNoB03oA2gIR0CpSVwJXyRTdX2UKGgGR0CWwOk7fYSQaAdN6ANoCEdAqUyKExqO93V9lChoBkdAl6omecx0uGgHTegDaAhHQKlQSWl/H5t1fZQoaAZHQJcpz6WPcSJoB03oA2gIR0CpVH8GcFyJdX2UKGgGR0CUz2PBBRhuaAdN6ANoCEdAqVVUhC+lCXV9lChoBkdAlL8KDTSb6WgHTegDaAhHQKlYfwF1SwZ1fZQoaAZHQJnVi6shgVpoB03oA2gIR0CpXEejdpIudX2UKGgGR0CY0rcZccENaAdN6ANoCEdAqWChmCiAUnV9lChoBkdAmTUKEBbOeWgHTegDaAhHQKlhdbD/EO11fZQoaAZHQJlY0MhHLA5oB03oA2gIR0CpZLCR4hUzdX2UKGgGR0CZqvsmv4dqaAdN6ANoCEdAqWh/bM5fdHV9lChoBkdAmPDn3L3bmGgHTegDaAhHQKltEOUdJat1fZQoaAZHQJqitbqyGBZoB03oA2gIR0CpbeFjd56ddX2UKGgGR0CZ7sLpRoAXaAdN6ANoCEdAqXEHAuZkTnV9lChoBkdAg6va19fCymgHTegDaAhHQKl0yM8YAKh1fZQoaAZHQJnfyTC+De1oB03oA2gIR0CpeQmmUGFBdX2UKGgGR0CaJhPwNLDiaAdN6ANoCEdAqXndK/VRUHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.98,
101
+ "gae_lambda": 0.93,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a60f363b0f86d098a751ae201ca29003d4abe13e8cfbdcec92fa1399ae5975f2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ef1d20d4375c0bc95c2758bb33e03a8970c6b76f8f587366e95c0953d27ea4a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc36389b670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc36389b700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc36389b790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc36389b820>", "_build": "<function ActorCriticPolicy._build at 0x7fc36389b8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc36389b940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc36389b9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc36389ba60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc36389baf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc36389bb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc36389bc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc36389bca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc363896780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674485260989549580, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADjaBD9qAqc/7++avmnNPD6GqLw+kaY6Pu0jvL4Dej6/D6FRP2fVOT98Nks+YeRePu4dC75RPxM/4MlnP7qxB79JTVk/e66+Pk5617669uk+GlzwvgGdRj9P/JQ/kHUXwGpsAD89LaQ+70XqPg/SAj8t8qU/emErv1DW5T4JnwpAKP4bv88tib4MHnA/QO+Iv/VTE77tFcS/hk8DvYkAF79OBxE+4YvZvAx2Fb/zuqo/x2gUv43GkL/D0jQ/Y8Mfv1OyojvYQc6/xeucP4wuLD/iJ/+/PS2kPu9F6j4P0gI/w07JPgW4wT+Jqhi/dS8jP0zcrD55pYy98N+SPlzSM79ErP0+M5xRv0ONJT89Qhw/s1gSvuINBMAwIdY+B/GPv7VytT1/U36/JMPmPsWsQz8Kl6I/NokPwLjfpz5ZnsC/amwAPz0tpD7vReo+D9ICP1+CID+gPK4/rQDAvnqc0z9ZBwE/tX6lPnFONz/bQzO/Nr+EP1ktqL8pnIM/TqxYv1rF9L+JxwQ/mDYAv0eHBT2iWkG/RNiXv32OJz+JAaA/uPKOP8G4779vPHM+esM6P2psAD/8lkfA70XqPg/SAj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD/P9O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGrWfPQAAAADBd+u/AAAAAB+GXrsAAAAAiUznPwAAAADQQFe9AAAAAGco2j8AAAAAAP4DPgAAAABuMgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARrJ2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHJTy7wAAAAAhLf5vwAAAABipro9AAAAAERq6T8AAAAAIBHKvAAAAAAVSeg/AAAAAPd6h70AAAAAQn3+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALyrADYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAWEle8AAAAAAUt/r8AAAAAym+4vQAAAABH7+w/AAAAAKL96T0AAAAAyxjhPwAAAADwV0O9AAAAACQH478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZmC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAk3W2PQAAAAA8TvO/AAAAAJdelT0AAAAAA8XiPwAAAABRLom9AAAAABiu7D8AAAAA8bg0vQAAAABPdey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqYUqgAZKqMAWyUTegDjAF0lEdAqE+ENe+mFnV9lChoBkdAmz+MxbjcVWgHTegDaAhHQKhTWIldC3R1fZQoaAZHQJpwON70Fr5oB03oA2gIR0CoV8FNcnmadX2UKGgGR0Cax4n7pFCtaAdN6ANoCEdAqFiYGOdXk3V9lChoBkdAm4QaJ2t+1GgHTegDaAhHQKhb0DEm6Xl1fZQoaAZHQJVFGiAUcn5oB03oA2gIR0CoX4mDcuandX2UKGgGR0CazfWMCLdfaAdN6ANoCEdAqGOxxxT853V9lChoBkdAm7gWepXIVGgHTegDaAhHQKhkgR5kbxV1fZQoaAZHQJeXpVDKHO9oB03oA2gIR0CoZ61tGd7OdX2UKGgGR0CWZPcuanaWaAdN6ANoCEdAqGtylP8AJnV9lChoBkdAkUrYdQwbl2gHTegDaAhHQKhvq1OTJQt1fZQoaAZHQJX6Hied07toB03oA2gIR0CocIdFfAsTdX2UKGgGR0CS0JK77Kq5aAdN6ANoCEdAqHOq/j81oHV9lChoBkdAkcOSj1wo9mgHTegDaAhHQKh3Yqp97Wx1fZQoaAZHQJDCxzr/sE9oB03oA2gIR0Coe/F67dzodX2UKGgGR0CQaY4j8k2QaAdN6ANoCEdAqHzEzTF2m3V9lChoBkdAkxWOR1X/52gHTegDaAhHQKh/+C9ytFN1fZQoaAZHQJOct+CsfaJoB03oA2gIR0Cog8iosI3SdX2UKGgGR0CUxcVfNRm9aAdN6ANoCEdAqIgDS7Xg+HV9lChoBkdAk4vMQd0aImgHTegDaAhHQKiI1CngpBp1fZQoaAZHQJkMWHRCx/xoB03oA2gIR0Coi/lId2gWdX2UKGgGR0CVrYSHuZ1FaAdN6ANoCEdAqI+v+l0o0HV9lChoBkdAmNJ0EHMUy2gHTegDaAhHQKiT9KgZjx11fZQoaAZHQJIHYkxASnNoB03oA2gIR0ColM1RLsa9dX2UKGgGR0CV99pSJj2BaAdN6ANoCEdAqJgAuVX3g3V9lChoBkdAl8bFjiGWU2gHTegDaAhHQKib0CbtqpN1fZQoaAZHQJYLATEit7toB03oA2gIR0CooBj7ZWaMdX2UKGgGR0CUM+X8wYceaAdN6ANoCEdAqKD2YIBzWHV9lChoBkdAkjeuvllsg2gHTegDaAhHQKikGuL74zt1fZQoaAZHQJFFP6rNnoRoB03oA2gIR0Cop/GozeoDdX2UKGgGR0CTwLUrTYukaAdN6ANoCEdAqKxAUi6g/XV9lChoBkdAk+vsv/R3NmgHTegDaAhHQKitD9LHuJF1fZQoaAZHQJY10n+hoM9oB03oA2gIR0CosC2w/xDtdX2UKGgGR0CUAk2EkB0ZaAdN6ANoCEdAqLPpFNL13HV9lChoBkdAkdddcSoOx2gHTegDaAhHQKi4RAVwgkl1fZQoaAZHQJuNngtOEdxoB03oA2gIR0CouRadtl7MdX2UKGgGR0CVr3w8GLUDaAdN6ANoCEdAqLxF/FzdUXV9lChoBkdAmL8ntv4ub2gHTegDaAhHQKi//0FKTSt1fZQoaAZHQJJdKcvugHxoB03oA2gIR0CoxDnanJkodX2UKGgGR0CZDAbKA8SxaAdN6ANoCEdAqMUJPj4pMHV9lChoBkdAmgp11Oj7AWgHTegDaAhHQKjINI0ZWJd1fZQoaAZHQJbcVDD0lJJoB03oA2gIR0Coy/JbD/EPdX2UKGgGR0CZo78NhE0BaAdN6ANoCEdAqNBH446wMnV9lChoBkdAmnDZBC2MKmgHTegDaAhHQKjRIg/1QIl1fZQoaAZHQJhrdyXD3uhoB03oA2gIR0Co1C3vH93sdX2UKGgGR0CZhs+fywwCaAdN6ANoCEdAqNfezt1IRXV9lChoBkdAkAam5lOGkGgHTegDaAhHQKjcERTS9dx1fZQoaAZHQJjQjRJEpiJoB03oA2gIR0Co3ODq4YrKdX2UKGgGR0CUl91uBMBZaAdN6ANoCEdAqN/3QMQVbnV9lChoBkdAl0HOcUdq+WgHTegDaAhHQKjjp6Q/5cl1fZQoaAZHQJmP9kz41xdoB03oA2gIR0Co5+t1ZDArdX2UKGgGR0CambSy+pOvaAdN6ANoCEdAqOjIlY2bX3V9lChoBkdAmdL1jy4FzWgHTegDaAhHQKjr9sHjZL91fZQoaAZHQJqiUlD4QBhoB03oA2gIR0Co76bojfNzdX2UKGgGR0CX1A2qDK5kaAdN6ANoCEdAqPQERWcSXnV9lChoBkdAmiKlJHy3C2gHTegDaAhHQKj01ZkkKNR1fZQoaAZHQJNJjR3NcGFoB03oA2gIR0Co9/pqZc9odX2UKGgGR0CZSRiOvMbFaAdN6ANoCEdAqPupAD7qIXV9lChoBkdAmZNPpY9xImgHTegDaAhHQKj/3OjZcs11fZQoaAZHQJqQlBgNPP9oB03oA2gIR0CpALOY6XBydX2UKGgGR0Cbfo0b961LaAdN6ANoCEdAqQPitJWeYnV9lChoBkdAmp/9KIznBGgHTegDaAhHQKkHpiMHbAV1fZQoaAZHQJo/L93r2QJoB03oA2gIR0CpC/MCLdeqdX2UKGgGR0CZUMTuOS4faAdN6ANoCEdAqQzTDuSfUXV9lChoBkdAmwWZW/8EV2gHTegDaAhHQKkP+ABkqc51fZQoaAZHQJlVtDF6zE9oB03oA2gIR0CpE797OVxCdX2UKGgGR0CY9Uvkili0aAdN6ANoCEdAqRgKI7/4qXV9lChoBkdAlVosDW9UTGgHTegDaAhHQKkY4t1ZDAt1fZQoaAZHQJizW+pOvdNoB03oA2gIR0CpHAfDDTBqdX2UKGgGR0CZVyek56t1aAdN6ANoCEdAqR/TDdgv13V9lChoBkdAllV+aScLB2gHTegDaAhHQKkkBj/+85F1fZQoaAZHQJtKruv2XcBoB03oA2gIR0CpJNPoePq+dX2UKGgGR0CX29wdKdxyaAdN6ANoCEdAqSgLdk8RtnV9lChoBkdAlfYzUExIrmgHTegDaAhHQKkrzjU/fO51fZQoaAZHQJl3HeJpFkRoB03oA2gIR0CpMCIDoyKvdX2UKGgGR0CbDDPE87p3aAdN6ANoCEdAqTD/3xnWa3V9lChoBkdAmYGTRUm2LGgHTegDaAhHQKk0LNtZV4p1fZQoaAZHQIyXZGYrrgRoB03oA2gIR0CpN/0+1SfldX2UKGgGR0CZrTr9ETg3aAdN6ANoCEdAqTxm2mYShHV9lChoBkdAmtQCYoiLVGgHTegDaAhHQKk9N212JSB1fZQoaAZHQJitVVDKHO9oB03oA2gIR0CpQGfzSThYdX2UKGgGR0CaZVlImPYGaAdN6ANoCEdAqUQpEMLF43V9lChoBkdAlfcRhUipvWgHTegDaAhHQKlIfOXVsk91fZQoaAZHQJned3hXKbNoB03oA2gIR0CpSVwJXyRTdX2UKGgGR0CWwOk7fYSQaAdN6ANoCEdAqUyKExqO93V9lChoBkdAl6omecx0uGgHTegDaAhHQKlQSWl/H5t1fZQoaAZHQJcpz6WPcSJoB03oA2gIR0CpVH8GcFyJdX2UKGgGR0CUz2PBBRhuaAdN6ANoCEdAqVVUhC+lCXV9lChoBkdAlL8KDTSb6WgHTegDaAhHQKlYfwF1SwZ1fZQoaAZHQJnVi6shgVpoB03oA2gIR0CpXEejdpIudX2UKGgGR0CY0rcZccENaAdN6ANoCEdAqWChmCiAUnV9lChoBkdAmTUKEBbOeWgHTegDaAhHQKlhdbD/EO11fZQoaAZHQJlY0MhHLA5oB03oA2gIR0CpZLCR4hUzdX2UKGgGR0CZqvsmv4dqaAdN6ANoCEdAqWh/bM5fdHV9lChoBkdAmPDn3L3bmGgHTegDaAhHQKltEOUdJat1fZQoaAZHQJqitbqyGBZoB03oA2gIR0CpbeFjd56ddX2UKGgGR0CZ7sLpRoAXaAdN6ANoCEdAqXEHAuZkTnV9lChoBkdAg6va19fCymgHTegDaAhHQKl0yM8YAKh1fZQoaAZHQJnfyTC+De1oB03oA2gIR0CpeQmmUGFBdX2UKGgGR0CaJhPwNLDiaAdN6ANoCEdAqXndK/VRUHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.93, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (965 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1417.4459926769136, "std_reward": 418.6228109207224, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T15:52:05.863230"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:975c5bceff20f6f6719238becfc6382ffcfa4224a8e3ecd401722688c917a9e7
3
+ size 2129