File size: 11,581 Bytes
96ed3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# -*- coding: utf-8 -*-
import argparse
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
from tqdm import tqdm
from models.protonet_embedding import ProtoNetEmbedding
from models.R2D2_embedding import R2D2Embedding
from models.ResNet12_embedding import resnet12
from models.classification_heads import ClassificationHead
from utils import pprint, set_gpu, Timer, count_accuracy, log
from sklearn.metrics import confusion_matrix, f1_score, roc_curve, auc
import scikitplot as skplt
import matplotlib.pyplot as plt
import numpy as np
import os
import random
import pickle
from dataloader.chest import label_dict
import pandas as pd
def multiclass_roc(y_test, y_score,n_classes = 3):
# structures
fpr = dict()
tpr = dict()
roc_auc = dict()
# calculate dummies once
y_test_dummies = pd.get_dummies(y_test, drop_first=False).values
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test_dummies[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
return fpr,tpr,roc_auc
# os.environ['CUDA_VISIBLE_DEVICES'] = "0"
def seed_everything(seed: int):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def euclidean_dist(x, y):
# x: N x D
# y: M x D
n = x.size(0)
m = y.size(0)
d = x.size(1)
assert d == y.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
return torch.pow(x - y, 2).sum(2)
def flip(x, dim):
xsize = x.size()
dim = x.dim() + dim if dim < 0 else dim
x = x.view(-1, *xsize[dim:])
x = x.view(x.size(0), x.size(1), -1)[:, getattr(torch.arange(x.size(1)-1,
-1, -1), ('cpu','cuda')[x.is_cuda])().long(), :]
return x.view(xsize)
def get_model(options):
# Choose the embedding network
if options.network == 'ProtoNet':
network = ProtoNetEmbedding().cuda()
elif options.network == 'R2D2':
network = R2D2Embedding().cuda()
elif options.network == 'ResNet':
if options.dataset == 'miniImageNet' or options.dataset == 'tieredImageNet':
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=5,num_layer=options.num_layer).cuda()
network = torch.nn.DataParallel(network)
else:
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=2,num_layer=options.num_layer).cuda()
else:
print ("Cannot recognize the network type")
assert(False)
# Choose the classification head
if opt.head == 'ProtoNet':
cls_head = ClassificationHead(base_learner='ProtoNet').cuda()
elif options.head == 'SubspaceTrans':
cls_head = ClassificationHead(base_learner='SubspaceTrans').cuda()
elif options.head == 'Subspace':
cls_head = ClassificationHead(base_learner='Subspace').cuda()
elif options.head == 'SubspaceFast':
cls_head = ClassificationHead(base_learner='SubspaceFast').cuda()
elif opt.head == 'Ridge':
cls_head = ClassificationHead(base_learner='Ridge').cuda()
elif opt.head == 'R2D2':
cls_head = ClassificationHead(base_learner='R2D2').cuda()
elif opt.head == 'SVM':
cls_head = ClassificationHead(base_learner='SVM-CS').cuda()
else:
print ("Cannot recognize the classification head type")
assert(False)
return (network, cls_head)
def get_dataset(options):
# Choose the embedding network
if options.dataset == 'miniImageNet':
from dataloader.mini_imagenet import MiniImageNet, FewShotDataloader
dataset_test = MiniImageNet(phase='test')
data_loader = FewShotDataloader
elif options.dataset == 'tieredImageNet':
from dataloader.tiered_imagenet import tieredImageNet, FewShotDataloader
dataset_test = tieredImageNet(phase='test')
data_loader = FewShotDataloader
elif options.dataset == 'CIFAR_FS':
from dataloader.CIFAR_FS import CIFAR_FS, FewShotDataloader
dataset_test = CIFAR_FS(phase='test')
data_loader = FewShotDataloader
elif options.dataset == 'FC100':
from dataloader.FC100 import FC100, FewShotDataloader
dataset_test = FC100(phase='test')
data_loader = FewShotDataloader
elif options.dataset == 'Chest':
from dataloader.chest import Chest, FewShotDataloader
dataset_test = Chest(phase='test')
data_loader = FewShotDataloader
else:
print ("Cannot recognize the dataset type")
assert(False)
return (dataset_test, data_loader)
#
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#Changes
parser.add_argument('--gpu', default='3')
#Changes
parser.add_argument('--load',
default='experiments/group2_subspace30_CE_train/best_model.pth', ## your best model
help='path of the checkpoint file')
#Changes
parser.add_argument('--num_layer', type=int, default=30,
help='num of layer')
parser.add_argument('--episode', type=int, default=1000,
help='number of episodes to test')
parser.add_argument('--way', type=int, default=3,
help='number of classes in one test episode')
parser.add_argument('--shot', type=int, default=5,
help='number of support examples per training class')
parser.add_argument('--query', type=int, default=5,
help='number of query examples per training class')
parser.add_argument('--network', type=str, default='ResNet',
help='choose which embedding network to use. ProtoNet, R2D2, ResNet')
parser.add_argument('--head', type=str, default='Subspace',
help='choose which embedding network to use. ProtoNet, Ridge, R2D2, SVM')
parser.add_argument('--dataset', type=str, default='Chest',
help='choose which classification head to use. miniImageNet, tieredImageNet, CIFAR_FS, FC100')
opt = parser.parse_args()
seed_everything(42)
(dataset_test, data_loader) = get_dataset(opt)
set_gpu(opt.gpu)
# Define the models
(embedding_net, cls_head) = get_model(opt)
# Load saved model checkpoints
saved_models = torch.load(opt.load)
embedding_net.load_state_dict(saved_models['embedding'])
embedding_net.eval()
cls_head.load_state_dict(saved_models['head'])
cls_head.eval()
aug=False
label_dict_inv = {v:k for k,v in label_dict.items()}
test_accuracies = []
per_class_accuracies = []
y_pred_list = []
y_list = []
dloader_test = data_loader(
dataset=dataset_test,
nKnovel=opt.way,
nKbase=0,
nExemplars=opt.shot, # num training examples per novel category
nTestNovel=opt.query * opt.way, # num test examples for all the novel categories
nTestBase=0, # num test examples for all the base categories
batch_size=1,
num_workers=1,
epoch_size=opt.episode, # num of batches per epoch
)
#print("epp: ", epp)
with torch.no_grad():
for i, batch in enumerate(tqdm(dloader_test()), 1):
data_support, labels_support, data_query, labels_query, _, _ = [x.cuda() for x in batch]
n_support = opt.way * opt.shot
n_query = opt.way * opt.query
if opt.shot == 1 and aug:
flipped_data_support = flip(data_support, 3)
data_support = torch.cat((data_support, flipped_data_support), dim=0)
labels_support = torch.cat((labels_support, labels_support), dim=0)
list_emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:])))
list_emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
logits = torch.zeros(n_query, opt.way).cuda()
for emb_support, emb_query in zip(list_emb_support, list_emb_query):
emb_support = emb_support.view(1, opt.way, opt.shot, -1).mean(2)
emb_query = emb_query.reshape(1, n_query, -1)
dists = euclidean_dist(emb_query[0], emb_support[0])
logits += F.softmax(-dists, dim=1).view(1 * opt.way * opt.query, -1)
logits /= opt.num_layer
logits = logits.reshape(-1, opt.way)
labels_query = labels_query.reshape(-1)
acc,pca = count_accuracy(logits, labels_query)
test_accuracies.append(acc.item())
per_class_accuracies.append(pca)
y_pred_list.append(logits.detach().cpu().numpy())
y_list.append(labels_query.detach().cpu().numpy())
avg = np.mean(np.array(test_accuracies))
std = np.std(np.array(test_accuracies))
ci95 = 1.96 * std / np.sqrt(i + 1)
if i % 10 == 0:
# print(logits.detach().cpu().numpy())
# print(torch.argmax(logits, dim=1).view(-1))
# print(labels_query.detach().cpu().numpy())
pca = np.array(per_class_accuracies).mean(0)
pcs = np.array(per_class_accuracies).std(0)
print('Episode [{}/{}]:\t\t\tAccuracy: {:.2f} ± {:.2f} ({:.2f}) % ({:.2f} %)'\
.format(i, opt.episode, avg, ci95,std, acc))
print(f'{label_dict_inv[9]}: {pca[0]:.2f} ± {pcs[0]:.2f} % | {label_dict_inv[10]}: {pca[1]:.2f} ± {pcs[1]:.2f} % | {label_dict_inv[11]}: {pca[2]:.2f} ± {pcs[2]:.2f}%')
pca = np.array(per_class_accuracies).mean(0)
pcs = np.array(per_class_accuracies).std(0)
print("Mean")
print(pca)
print('Standard Deviation')
print(pcs)
y_pred_proba = np.array(
y_pred_list).reshape(-1, 3)
y_pred = np.argmax(y_pred_proba, axis=1)
y_true = np.array(y_list).reshape(-1)
f1 = f1_score(y_true, y_pred, average=None)
print('F1 Score')
print(f1)
fpr,tpr, auc = multiclass_roc(y_true,y_pred_proba)
save_tuple = (fpr,tpr,auc)
print(auc)
# Plots
#Changes
# with open('plot/group5_subspace25.pickle', 'wb') as f:
# pickle.dump(save_tuple, f)
#Changes
class_dict = {'Fibrosis': 0, 'Hernia': 1, 'Pneumonia': 2}
# class_dict = {'Mass': 0, 'Nodule': 1, 'Pleural_Thickening': 2}
# class_dict = {'Cardiomegaly': 0, 'Edema': 1, 'Emphysema': 2}
# class_dict = {'Consolidation': 0, 'Effusion': 1, 'Pneumothorax': 2}
# class_dict = {'Atelectasis': 0, 'Infiltration': 1, 'No Finding': 2}
class_dict_inv = {v: k for k, v in class_dict.items()}
y_true = np.array([class_dict_inv[i]
for i in np.array(y_list).reshape(-1)])
# print(np.array(y_pred_list).reshape(-1, 3).shape)
# print(np.array(y_list).reshape(-1).shape)
# print(y_list)
# print(np.array(y_pred_list).reshape(-1, 3))
# skplt.metrics.plot_roc(y_true, y_pred_proba,plot_micro=False, plot_macro=False)
#Changes
# plt.savefig('plot/group5_subspace25.png', dpi=1000)
# plt.show()
# python test_ortho_bcs.py --gpu 2 --load experiments/chest_exp1/best_model.pth --way 3 --dataset Chest
# python test_ortho_bcs.py --gpu 2 --load experiments/chest_exp1/best_model.pth --way 3 --dataset Chest |