darragh commited on
Commit
6599eb0
•
1 Parent(s): a486822

correct folder files

Browse files
swinunetr-btcv-small/LICENSE → LICENSE RENAMED
File without changes
README.md CHANGED
@@ -1,3 +1,132 @@
1
  ---
 
 
 
 
 
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - btcv
5
+ - medical
6
+ - swin
7
  license: apache-2.0
8
+ datasets:
9
+ - BTCV
10
  ---
11
+
12
+ # Model Overview
13
+
14
+ This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation
15
+ Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised
16
+ manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch.
17
+
18
+ The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV).
19
+
20
+ # Installing Dependencies
21
+ Dependencies for training and inference can be installed using the model requirements :
22
+ ``` bash
23
+ pip install -r requirements.txt
24
+ ```
25
+
26
+ # Intended uses & limitations
27
+
28
+ You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
29
+
30
+ Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format.
31
+
32
+ # How to use
33
+
34
+ To install necessary dependencies, run the below in bash.
35
+ ```
36
+ git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc
37
+ pip install -r pmrc/requirements.txt
38
+ cd pmrc/SwinUNETR/BTCV
39
+ ```
40
+
41
+ To load the model from the hub.
42
+ ```
43
+ >>> from swinunetr import SwinUnetrModelForInference
44
+ >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny')
45
+ ```
46
+
47
+ You can also use `predict.py` to run inference for sample dicom medical images.
48
+
49
+ # Limitations and bias
50
+
51
+ The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance.
52
+
53
+ # Evaluation results
54
+
55
+ We provide several pre-trained models on BTCV dataset in the following.
56
+
57
+ <table>
58
+ <tr>
59
+ <th>Name</th>
60
+ <th>Dice (overlap=0.7)</th>
61
+ <th>Dice (overlap=0.5)</th>
62
+ <th>Feature Size</th>
63
+ <th># params (M)</th>
64
+ <th>Self-Supervised Pre-trained </th>
65
+ </tr>
66
+ <tr>
67
+ <td>Swin UNETR/Base</td>
68
+ <td>82.25</td>
69
+ <td>81.86</td>
70
+ <td>48</td>
71
+ <td>62.1</td>
72
+ <td>Yes</td>
73
+ </tr>
74
+
75
+ <tr>
76
+ <td>Swin UNETR/Small</td>
77
+ <td>79.79</td>
78
+ <td>79.34</td>
79
+ <td>24</td>
80
+ <td>15.7</td>
81
+ <td>No</td>
82
+ </tr>
83
+
84
+ <tr>
85
+ <td>Swin UNETR/Tiny</td>
86
+ <td>72.05</td>
87
+ <td>70.35</td>
88
+ <td>12</td>
89
+ <td>4.0</td>
90
+ <td>No</td>
91
+ </tr>
92
+
93
+ </table>
94
+
95
+ # Data Preparation
96
+ ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0)
97
+
98
+ The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752).
99
+
100
+ - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland.
101
+ - Task: Segmentation
102
+ - Modality: CT
103
+ - Size: 30 3D volumes (24 Training + 6 Testing)
104
+
105
+ # Training
106
+
107
+ See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training.
108
+
109
+ # BibTeX entry and citation info
110
+ If you find this repository useful, please consider citing the following papers:
111
+
112
+ ```
113
+ @inproceedings{tang2022self,
114
+ title={Self-supervised pre-training of swin transformers for 3d medical image analysis},
115
+ author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali},
116
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
117
+ pages={20730--20740},
118
+ year={2022}
119
+ }
120
+
121
+ @article{hatamizadeh2022swin,
122
+ title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images},
123
+ author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang},
124
+ journal={arXiv preprint arXiv:2201.01266},
125
+ year={2022}
126
+ }
127
+ ```
128
+
129
+ # References
130
+ [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740).
131
+
132
+ [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.
swinunetr-btcv-small/config.json → config.json RENAMED
File without changes
swinunetr-btcv-small/pytorch_model.bin → pytorch_model.bin RENAMED
File without changes
swinunetr-btcv-small/requirements.txt → requirements.txt RENAMED
File without changes
swinunetr-btcv-small/README.md DELETED
@@ -1,132 +0,0 @@
1
- ---
2
- language: en
3
- tags:
4
- - btcv
5
- - medical
6
- - swin
7
- license: apache-2.0
8
- datasets:
9
- - BTCV
10
- ---
11
-
12
- # Model Overview
13
-
14
- This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation
15
- Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised
16
- manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch.
17
-
18
- The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV).
19
-
20
- # Installing Dependencies
21
- Dependencies for training and inference can be installed using the model requirements :
22
- ``` bash
23
- pip install -r requirements.txt
24
- ```
25
-
26
- # Intended uses & limitations
27
-
28
- You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
29
-
30
- Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format.
31
-
32
- # How to use
33
-
34
- To install necessary dependencies, run the below in bash.
35
- ```
36
- git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc
37
- pip install -r pmrc/requirements.txt
38
- cd pmrc/SwinUNETR/BTCV
39
- ```
40
-
41
- To load the model from the hub.
42
- ```
43
- >>> from swinunetr import SwinUnetrModelForInference
44
- >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny')
45
- ```
46
-
47
- You can also use `predict.py` to run inference for sample dicom medical images.
48
-
49
- # Limitations and bias
50
-
51
- The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance.
52
-
53
- # Evaluation results
54
-
55
- We provide several pre-trained models on BTCV dataset in the following.
56
-
57
- <table>
58
- <tr>
59
- <th>Name</th>
60
- <th>Dice (overlap=0.7)</th>
61
- <th>Dice (overlap=0.5)</th>
62
- <th>Feature Size</th>
63
- <th># params (M)</th>
64
- <th>Self-Supervised Pre-trained </th>
65
- </tr>
66
- <tr>
67
- <td>Swin UNETR/Base</td>
68
- <td>82.25</td>
69
- <td>81.86</td>
70
- <td>48</td>
71
- <td>62.1</td>
72
- <td>Yes</td>
73
- </tr>
74
-
75
- <tr>
76
- <td>Swin UNETR/Small</td>
77
- <td>79.79</td>
78
- <td>79.34</td>
79
- <td>24</td>
80
- <td>15.7</td>
81
- <td>No</td>
82
- </tr>
83
-
84
- <tr>
85
- <td>Swin UNETR/Tiny</td>
86
- <td>72.05</td>
87
- <td>70.35</td>
88
- <td>12</td>
89
- <td>4.0</td>
90
- <td>No</td>
91
- </tr>
92
-
93
- </table>
94
-
95
- # Data Preparation
96
- ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0)
97
-
98
- The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752).
99
-
100
- - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland.
101
- - Task: Segmentation
102
- - Modality: CT
103
- - Size: 30 3D volumes (24 Training + 6 Testing)
104
-
105
- # Training
106
-
107
- See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training.
108
-
109
- # BibTeX entry and citation info
110
- If you find this repository useful, please consider citing the following papers:
111
-
112
- ```
113
- @inproceedings{tang2022self,
114
- title={Self-supervised pre-training of swin transformers for 3d medical image analysis},
115
- author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali},
116
- booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
117
- pages={20730--20740},
118
- year={2022}
119
- }
120
-
121
- @article{hatamizadeh2022swin,
122
- title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images},
123
- author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang},
124
- journal={arXiv preprint arXiv:2201.01266},
125
- year={2022}
126
- }
127
- ```
128
-
129
- # References
130
- [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740).
131
-
132
- [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.