File size: 7,386 Bytes
bd2706c
 
 
 
 
 
 
73fba6d
 
bd2706c
 
 
 
 
 
 
 
 
 
 
 
c3d58c8
 
 
bd2706c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73fba6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
tags:
- summarization
- bart
language:
- gr
license: mit
pipeline_tag: fill-mask
library_name: transformers
---
# GreekBART: The First Pretrained Greek Sequence-to-Sequence Model

## Introduction 
GreekBART is a Greek sequence to sequence pretrained model based on [BART](https://huggingface.co/facebook/bart-large).
GreekBART is pretrained by learning to reconstruct a corrupted input sentence. A corpus of 76.9GB of Greek raw text is used to carry out the pretraining.
Unlike already existing BERT-based Greek language model (GreekBERT), GreekBART is particularly well-suited for generative tasks (such as abstractive summarization), since not only its encoder but also its decoder is pretrained. 
In addition to base GreekBART that is pretrained from scratch on the reconstruction, we finetune it as wll on three tasks: `greekbart-news24-abstract` that can generate an abstract given a Greek news article, `greekbart-news24-title` that can generate an title given a Greek news article, and `greekbart-sentiment-classification` finetuned on a binary sentinement classification task.

| Model                                                      | Architecture  | #layers | #params |
| -------------                                              |:-------------:| :-----:|:-----:|
| [GreekBART](https://huggingface.co/dascim/greekbart)        | BASE          | 12     | 165M  |
| [GreekBART Abstract](https://huggingface.co/dascim/greekbart-news24-abstract)      | BASE         | 12     | 165M  |
| [GreekBART Title](https://huggingface.co/dascim/greekbart-news24-title)      | BASE         | 12     | 165M  |
| [GreekBART Sentiment Classification](https://huggingface.co/dascim/greekbart-sentiment-classification)      | BASE         | 12     | 165M  |

<br>

paper: https://arxiv.org/pdf/2304.00869 \
github: https://github.com/iakovosevdaimon/GreekBART


## Usage
### Mask Prediction
```python
from transformers import pipeline 

greekbart_fill_mask  = pipeline("fill-mask", model="dascim/greekbart", tokenizer="dascim/greekbart")
results = greekbart_fill_mask("Η πρωτεύουσα της Ελλάδας είναι η <mask>")

results[0]
# {'score': 0.597200870513916, 'token': 7062, 'token_str': 'Αθήνα', 'sequence': 'Η πρωτεύουσα της Ελλάδας είναι η Αθήνα'}, 

```
### Abstract Generation
```python
text_sentence = 'Στην κατάθεση νοσηλεύτριας του Καραμανδάνειου Νοσοκομείου Πάτρας Παναγιώτας Τσεντούρου, η οποία εργαζόταν όταν εισήχθη στις 8 Απριλίου 2021 η Τζωρτζίνα, προχώρησε η διαδικασία ενώπιον του ΜΟΔ που δικάζει τη Ρούλα Πισπιρίγκου. Η νοσηλεύτρια κατέθεσε πως κατά την εισαγωγή του παιδιού "μου ανέφεραν πως είναι ένα παιδάκι που έχει χάσει τα αδελφάκια του και ότι είναι ιδιαίτερη περίπτωση" και εξιστόρησε τα γεγονότα της ημέρας εισαγωγής και της επομένης που η ίδια είχε βάρδια στην παιδιατρική κλινική.'

from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM
)

tokenizer = AutoTokenizer.from_pretrained("dascim/greekbart-news24-abstract")
model = AutoModelForSeq2SeqLM.from_pretrained("dascim/greekbart-news24-abstract")

input_ids = tokenizer.encode(text_sentence, add_special_tokens=True, return_tensors='pt')

model.eval()
predict = model.generate(input_ids, max_length=100)[0]


tokenizer.decode(predict, skip_special_tokens=True)
#'Η νοσηλεύτρια κατέθεσε πως κατά την εισαγωγή του παιδιού "μου ανέφεραν πως είναι ένα παιδάκι που έχει χάσει τα αδελφάκια του και ότι είναι ιδιαίτερη περίπτωση".'
```

### Title Generation
```python
text_sentence = 'Στην κατάθεση νοσηλεύτριας του Καραμανδάνειου Νοσοκομείου Πάτρας Παναγιώτας Τσεντούρου, η οποία εργαζόταν όταν εισήχθη στις 8 Απριλίου 2021 η Τζωρτζίνα, προχώρησε η διαδικασία ενώπιον του ΜΟΔ που δικάζει τη Ρούλα Πισπιρίγκου. Η νοσηλεύτρια κατέθεσε πως κατά την εισαγωγή του παιδιού "μου ανέφεραν πως είναι ένα παιδάκι που έχει χάσει τα αδελφάκια του και ότι είναι ιδιαίτερη περίπτωση" και εξιστόρησε τα γεγονότα της ημέρας εισαγωγής και της επομένης που η ίδια είχε βάρδια στην παιδιατρική κλινική.'

from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM
)

tokenizer = AutoTokenizer.from_pretrained("dascim/greekbart-news24-title")
model = AutoModelForSeq2SeqLM.from_pretrained("dascim/greekbart-news24-title")

input_ids = tokenizer.encode(text_sentence, add_special_tokens=True, return_tensors='pt')

model.eval()
predict = model.generate(input_ids, max_length=100)[0]


tokenizer.decode(predict, skip_special_tokens=True)
# 'Πάτρα: Κατάθεση νοσηλεύτριας για την εισαγωγή της Τζωρτζίνας στο νοσοκομείο'
```

### Sentiment Prediction
```python
text_sentence = "Ο ελληνικός πολιτισμός είναι ένας από τους πιο πλούσιους και αναγνωρισμένους πολιτισμούς."

from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification
)

tokenizer = AutoTokenizer.from_pretrained("dascim/greekbart-sentiment-classification")
model = AutoModelForSequenceClassification.from_pretrained("dascim/greekbart-sentiment-classification")

input_ids = tokenizer.encode(text_sentence, add_special_tokens=True, return_tensors='pt')

model.eval()
predict = model(input_ids)[0]

print("negative" if predict.argmax(dim=-1).item()==1 else "positive") 
# positive
```

## Authors
GreekBART was trained and evaluated ar École Polytechnique by Iakovos Evdaimon, Hadi Abdine, Christos Xypolopoulos, Stamatis Outsios, Michalis Vazirgiannis and Giorgos Stamou.

## Citation
If you use our work, please cite:
```bibtex
@inproceedings{evdaimon-etal-2024-greekbart,
    title = "{G}reek{BART}: The First Pretrained {G}reek Sequence-to-Sequence Model",
    author = "Evdaimon, Iakovos  and
      Abdine, Hadi  and
      Xypolopoulos, Christos  and
      Outsios, Stamatis  and
      Vazirgiannis, Michalis  and
      Stamou, Giorgos",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.700",
    pages = "7949--7962",
}
```