daspartho commited on
Commit
a34e8c9
1 Parent(s): 2e1bd95

Upload PPO BipedalWalker-v3 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
- value: 248.42 +/- 81.92
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: 105.66 +/- 93.68
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73cf1ebe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73cf1ebee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73cf1ebf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73cf1f0040>", "_build": "<function ActorCriticPolicy._build at 0x7f73cf1f00d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f73cf1f0160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73cf1f01f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f73cf1f0280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73cf1f0310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73cf1f03a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73cf1f0430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f73cf1e9450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 32, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670650490791796794, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAACy9lT62rw++GQH4PpWznb1usk6/AACAswBGhrs+OCk/AACAP370kD/+/38/mt7SPt/bVT8AAAAAvIGTPsfNmT7VYKE+LTerPm7twD6I8uE+cP8HP0uyLz94a2U/AACAP7CvOj9jtrU9V7q1Ptydm7zayDy/j66ovxCp0b2gNQk/AACAP4Fpez8CAIC/YC1TP/0yHT4AAAAAg1eyPi+fsz7OTbg+7kfBPv5lzz6xaeo+TFgKPwxoMj9ow3w/AACAP68OID6oYja+GR0GPyqrib2/j1W/AP7jPK6iAT8jAIA/AACAPzRSkD8AAAAAg0EHP0f/f78AAAAASh6XPjOXlz5c5Zw+n+ykPoYarz5G0L8+5j/dPgBUCT+LsEw/AACAP0s2CT8A5EA91vEWPvHKlj0r5Ui+nB6SPkiJIr8AAAAAAAAAABL0Dj8AEMk+UA6Dvfj/fz8AAAAAmz/BPojMwj4ulMg+4KLVPlWC6j7OSAQ/LI4aP+DIOj/Urng/AACAPzBW2T4euBc9zcHQPg8QubzM3xW/DICKv1D2Rz3bLCE/AACAP9+AiT8CAIA/QNYOP/j/f78AAAAATi+xPhBvsT6EgrU+d3a+PvSizz5qY+0+ThgNP9skNj8AAIA/AACAPwXHGz9UthO7/CCyPnhMv71KOgq/L5mGviSw4b4BAIA/AAAAAHjd2j5X4Vs/iJB+PusREMAAAAAAQ3e3PsfCuD4gtr0+oebGPpYA2T6iDvM+dUEOP7ScMT8AAIA/AACAPzFa1z58Lb09Y1h5PsarJr2m3a2+/v9/v24gAr+Ah8G+AAAAALmiXD9VEF+/2IsBPvz/fz8AAAAAwA+tPnWHsD5idbg+iX3CPka00D6UyOQ+sg0DP9VxHz/i5Vs/AACAPzYlBD9dmBo9OdGmPnx8mTxX5yO/AACAv+Bsir4XZh8/AAAAAKfbdD8rx4e+fhY7P/3/fz8AAAAAcraWPkv8lz60rpw+Z2mlPiTdsj4lZcc+Kq/mPlgaDj8xt0Q/AACAP+w2rz6c5uI8wLMiPsmhij3ij1C/AABAs7DLJD0w2XC9AAAAAIsmkT8AAAAA8MEQPovWCr8AAIA/Pb16Pg3yeT5UUoA+8zaHPieFkz7cxKY+UiDFPgZk+T68RDg/AACAP0Jnpj0HHwm+sZ7fPv2DPj2AoFS/mBWYPbI19T6QdWs/AAAAAA4Vij8VHxG/408AP9ODBUAAAIA/jPeMPpA5jz5Qm5Y+b/+iPq4ItD5qb80+sXv1PuB4Fz/7m0s/AACAPxsQCj4cdhy+MgjaPgXX2DxKT0+/AAAAAExH2T4AAIA/AAAAAIQUkT8AAAAA3Pm7Pg0aEj4AAAAAI2yVPrU3mD5hmp8+zkqrPmpMvD6kjNQ+btn/PhyoIT/hTFg/AACAPxedbD8eA4G9nG1TPqDZSj0OvVW/AAAAAGwB9b5XD5M+AACAP8gQij86fya/zJNTPwEAgD8AAAAADSCMPhzLij5M6ow+j5mTPhe2nj499q8+YcbPPtpfBT8a/DY/AACAP9CeaD6MQda8w3GMPirA17wvygu+0rsvP9S5tb7X0KG/AACAP2s2kT/8/38/PD3kvvj/fz8AAAAA9mmqPkRZrD54kLE+lIi7PnAXzz4+7PE+hF4PPwubOD83mng/AACAP46odz+qkcQ8M43APuCI4r3/uEG/AACAv7QQ5b79/38/AAAAAAmJjT8fiiY+fDnUPgEAgD8AAAAA80auPnLUrj6NLbI+2jO8PjH+yz5E9+A+L7IEP49hLD9eXXo/AACAPxOy8j5NKxi6ncjgPqyIAb0sVhu//v9/v0wZsL58Dys/AACAP8ftgT8rAE8/1FVtPv3/fz8AAAAA7WWYPvlgnD48gqQ+AuSxPjTFxj62c+Y+j5cIP2YkMj+Wtm8/AACAP4J6kz5s2iO+eqTvPi1BhDyFvFW/AIDSuGqi2z6zxn0/AACAP4TNiz8co28+dOIaPsD/f78AAAAAi+mjPotFpT7ZRas+DNW0PuAMwz70k9g+RFL+PgDQHj+3ylM/AACAP5sypj7/qxA9EwhTPvZ1fD0ID7q+krjvvmikvr4JfaS9AACAP4qFgz/wdGe/UKGavfv/fz8AAAAAEBGdPrPZnj7naKQ+2iSuPpObvD7JSdM+Pb/2PkicGz+IUVs/AACAP5lSkj6puEk9kZeKPq+fo7vE2Y2+tFP8vrwMzL6tvIG+AAAAAGfOkD8AAAAAyBJPPgMAgD8AAAAAtUayPkw+sj5Ae7g+puq/Phakyz7Qtt8++C0CPwvkJj+gs3c/AACAP9TTAT6G6Qw9hqWSPg5ftjzaHrS+KsE2PwBxdr0AAIC/AAAAAJDzhj8AAIC/EMrKvfv/fz8AAAAApMmpPoXaqz73OrI+OYy/PlSQ1T7zevg+Pq4WP9/ANz/nkGw/AACAP6G8wT7X+dQ9NRC9PsUOgLuFClG+yCW5v5hg8L5nvus+AACAPxv7jj8AAAAAdLapvvX/f78AAAAAGminPsxOqT5ea68+ZKy6Ph7vyz5bG+g+EpEJP9gJJz/dWlM/AACAP6WgOj5mCg++tpD9PsGDdz0AvVW/AAAAALi8rD4AAIA/AAAAAOSZjz9MCGy+ROVQPqwcpz8AAIA/x36TPpYrlT4sUpg+XwufPsxzrD64LcI+rHLlPpgoET851kE/AACAP1jus742rS+97GJOPix4o7353go/7f9/Pyzl7L4AAIC/AAAAALbWjz8EAIA/Gsgov/n/f78AAIA/5D+6Pl5dvD5EW8M+TEvQPs5+5T4KwAE/H/kVP4g2Oj+RgX0/AACAP7jVZT7CYom6YhAEPrqAfT1ooJk7/f9/P+wC8b74/38/AAAAAIuTZz9BkQG+oFAfPpWxDr0AAIA/Y2y1Pi85tz75jrs+Jh3EPtzY0j55oeo+MqYJP8bvKj+4vnA/AACAP3MIeT47HHE8lWjBPoF1x72Az/O5AgCAv4TEIL85PIM+AAAAAGHQkz8BAIA/ICN7vvz/f78AAAAA76WgPlabpD5oAqs+2La0PmXcwj7Eqdg+TSr+PlHEHT+ZkFE/AACAP1YtKj/QgRK9176mPvBuDr0gAEK/b/J+P3jBkr5wGDC/AACAP/yThz+71Ae/yv1XPwEAgD8AAAAA6a6YPoqSmT4mRp4+JaenPrGQtT7W9Mo+PWfvPsUtGj8sV1Y/AACAP7KPjz7LVBY9/ECPPnS1u71NZ6q+FidBvzxwxr58nVk+AACAP6yDiT+eHtU+YPbnvgEAgD8AAAAAbIafPqi+oT4BwKc+yPmxPhHPwj5JR90+qXUEP/lBKj8+xl0/AACAP9GoFz+o4+q9yMTXPtMKyD2nvFW/AMCvOIDgT76dVzI/AAAAAHLYjz8AAEC2OCgGP6iOf78AAAAAkt6OPjsdkD6BWJU+PIaePl3krD4uJMI+2rTlPu/8Dj/ldkU/AACAP8Dmwj6pktI9Xtm7PpLKpb1megy+4xiwvwy6Gb8BIX8+AAAAABXXhj/8/3+/rHUkPwEAgD8AAAAAquWaPspmmj4wVp0+VqikPoCksz6D18o+hMnuPuMOGj8OHmA/AACAP3025z6xDMw9+uCxPuamsDzZSpe+hKicvvBJIL///3+/AAAAAINwFD9B1ni/WC8av6uqKrMAAAAAmiu6Pph2vD4qScM+IOXMPhQD3j5cVvw++YoVP6RQQT8AAIA/AACAP9NrzT5UUKk90AlyPskh6r3bXEi/Cv8qP7gNTL7//3+/AAAAANGnXT8IUeQ9KA/qPRM5fb8AAIA/YkqWPo0vmD7Y9J0+37ioPh0Ruj4b8tQ+r6b3PkdtFz/Hn0Y/AACAP8vTnj77SvI9EyxePh/cdL30Yxw8AgCAvzrFL79gxxM9AACAP7lXXT/+/3+/wDUkvQMAgD8AAAAACOCiPqAxpz4Dua8+Dmm9PkJbzz6Sl+4+dIMQPyYBNj+B9nM/AACAP6/qHz/skaE9/Ux7Pr2qzjySm8W+7y3rvpw4Ab/9/38/AAAAAJrCFD+iB3c+Fk3bPqj6NT8AAAAAUVCwPoOqsT7f2bU+jNi9Posfzz5ppOc+wwMHP++6Jj8rjWQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDMufbwsuQ0CUhpRSlIwBbJRNeQSMAXSUR0CiLSF36hxpdX2UKGgGaAloD0MINEjBU8jHRMCUhpRSlGgVTS4CaBZHQKIvG580DU51fZQoaAZoCWgPQwjw3Hu45G1mQJSGlFKUaBVNQAZoFkdAoi/2BreqJnV9lChoBmgJaA9DCJT3cTRH+mZAlIaUUpRoFU1ABmgWR0CiL/TH80k4dX2UKGgGaAloD0MI81Zdh2pRXsCUhpRSlGgVS1toFkdAojJYJgLJCHV9lChoBmgJaA9DCBo2yvrNaGxAlIaUUpRoFU1ABmgWR0CiNFecQRPHdX2UKGgGaAloD0MIMV2I1Z9ka0CUhpRSlGgVTUAGaBZHQKI0lxOtW+51fZQoaAZoCWgPQwjiWYKMgGxewJSGlFKUaBVLWGgWR0CiNL2KVII4dX2UKGgGaAloD0MIIXh8e9ebakCUhpRSlGgVTUAGaBZHQKI1K2kSElF1fZQoaAZoCWgPQwhcGyrGeb9nQJSGlFKUaBVNQAZoFkdAojU5E6T4cnV9lChoBmgJaA9DCA2nzM03N2tAlIaUUpRoFU1ABmgWR0CiNar8zhxYdX2UKGgGaAloD0MIV9C0xMofbECUhpRSlGgVTUAGaBZHQKI2absF+ux1fZQoaAZoCWgPQwj0UrExrxZnQJSGlFKUaBVNQAZoFkdAojaGMGX5WXV9lChoBmgJaA9DCFWhgVg2slDAlIaUUpRoFU2kAWgWR0CiOEhgmZ3LdX2UKGgGaAloD0MIjV94Jcm7akCUhpRSlGgVTUAGaBZHQKI5XC6Ymb91fZQoaAZoCWgPQwhtrS8S2oZmQJSGlFKUaBVNQAZoFkdAojlzhLoOhHV9lChoBmgJaA9DCBh47j1cVFTAlIaUUpRoFUumaBZHQKI5lZEDyOJ1fZQoaAZoCWgPQwhmEvWCT8tpQJSGlFKUaBVNQAZoFkdAojn7Q5WBBnV9lChoBmgJaA9DCLqe6LrwPFVAlIaUUpRoFU16BWgWR0CiO9WjXWe6dX2UKGgGaAloD0MITG4UWet2ZkCUhpRSlGgVTUAGaBZHQKI7/hhpg1F1fZQoaAZoCWgPQwg9nMB0WjppQJSGlFKUaBVNQAZoFkdAojw4CZF5OnV9lChoBmgJaA9DCNcXCW25g2xAlIaUUpRoFU1ABmgWR0CiPkqCxu89dX2UKGgGaAloD0MIPwCpTRyRakCUhpRSlGgVTUAGaBZHQKI/pDn/1g91fZQoaAZoCWgPQwgH8BZIUHNUwJSGlFKUaBVL+GgWR0CiQJUAcT8HdX2UKGgGaAloD0MI+FROe0pzbUCUhpRSlGgVTSwGaBZHQKJBpPv8ZUF1fZQoaAZoCWgPQwgg7BSrhthpQJSGlFKUaBVNQAZoFkdAokJLzoUzsXV9lChoBmgJaA9DCNl4sMVuuUTAlIaUUpRoFU3IAWgWR0CiQp7wazeGdX2UKGgGaAloD0MIBtUGJ6I9akCUhpRSlGgVTUAGaBZHQKJCym0E5hl1fZQoaAZoCWgPQwjik04kGD5rQJSGlFKUaBVNQAZoFkdAolz08DB/JHV9lChoBmgJaA9DCKOs30xMMmlAlIaUUpRoFU1ABmgWR0CiXaS8zyjIdX2UKGgGaAloD0MIQWZn0TvuakCUhpRSlGgVTUAGaBZHQKJdv7TlT3t1fZQoaAZoCWgPQwhmSYCaWnBFwJSGlFKUaBVNrwFoFkdAol5Z1ie/YnV9lChoBmgJaA9DCF73ViSmsmlAlIaUUpRoFU1ABmgWR0CiYF9CNS62dX2UKGgGaAloD0MI6iPwhx++a0CUhpRSlGgVTUAGaBZHQKJhnUnXumd1fZQoaAZoCWgPQwiVumQco29oQJSGlFKUaBVNQAZoFkdAomJ8d/8VHnV9lChoBmgJaA9DCB07qMR1cEfAlIaUUpRoFU3HAWgWR0CiZRBVU+9rdX2UKGgGaAloD0MIgqynVt8sbECUhpRSlGgVTUAGaBZHQKJliQlKK511fZQoaAZoCWgPQwh002acBhlnQJSGlFKUaBVNQAZoFkdAomWoE2YOUnV9lChoBmgJaA9DCHSXxFkRI2xAlIaUUpRoFU1ABmgWR0CiZuiSidrgdX2UKGgGaAloD0MIOL2L9+PHbUCUhpRSlGgVTSAGaBZHQKJtbMpPRAt1fZQoaAZoCWgPQwieYtUgzIhQwJSGlFKUaBVNZwFoFkdAom6jFS88LnV9lChoBmgJaA9DCGR0QBJ2lmhAlIaUUpRoFU1ABmgWR0CicGH6VMVUdX2UKGgGaAloD0MIG2g+5+71bECUhpRSlGgVTUAGaBZHQKJxNlbNbC91fZQoaAZoCWgPQwhtyD8ziCVuQJSGlFKUaBVN3AVoFkdAonLqYoiLVHV9lChoBmgJaA9DCKyL22gAc21AlIaUUpRoFU01BmgWR0CidZFhw2l3dX2UKGgGaAloD0MIRL+2fvqxakCUhpRSlGgVTUAGaBZHQKJ1/lOoHcF1fZQoaAZoCWgPQwiOlZhnJc0kQJSGlFKUaBVN5AJoFkdAonYu47Rv33V9lChoBmgJaA9DCFUwKqkTRG1AlIaUUpRoFU08BmgWR0CidmF+NLlFdX2UKGgGaAloD0MI6wCIu/qea0CUhpRSlGgVTUAGaBZHQKJ25qwhW5p1fZQoaAZoCWgPQwiMD7OX7V5tQJSGlFKUaBVNQAZoFkdAoo5LYh+vyXV9lChoBmgJaA9DCK32sBcKnWxAlIaUUpRoFU1ABmgWR0CikDHe7+UAdX2UKGgGaAloD0MImUf+YGDqaECUhpRSlGgVTUAGaBZHQKKRTxXnyNJ1fZQoaAZoCWgPQwjwoxr2e5ZsQJSGlFKUaBVNQAZoFkdAopFoEKVpsXV9lChoBmgJaA9DCJyJ6UKsKGpAlIaUUpRoFU1ABmgWR0CikYpOvdM1dX2UKGgGaAloD0MIUIvBw7ScVsCUhpRSlGgVS4poFkdAopICSgXdkHV9lChoBmgJaA9DCOYg6GhV4m1AlIaUUpRoFU0KBmgWR0Cikobrs0HhdX2UKGgGaAloD0MIa0qyDkfxaECUhpRSlGgVTUAGaBZHQKKTzPVurIZ1fZQoaAZoCWgPQwhUxr/POKNtQJSGlFKUaBVNOwZoFkdAopYfDNyHVXV9lChoBmgJaA9DCAZmhSLdHmxAlIaUUpRoFU1ABmgWR0Cil5NI065odX2UKGgGaAloD0MI51Wd1YIWa0CUhpRSlGgVTUAGaBZHQKKYjDO1OTJ1fZQoaAZoCWgPQwjF5uPaUFJtQJSGlFKUaBVNFQZoFkdAopmcfs/puHV9lChoBmgJaA9DCBdH5SbqAmpAlIaUUpRoFU1ABmgWR0CimayjgydndX2UKGgGaAloD0MIKeeLvZd4aECUhpRSlGgVTUAGaBZHQKKanAeJYT11fZQoaAZoCWgPQwgB4NizZ8xtQJSGlFKUaBVN8AVoFkdAopztNUOuq3V9lChoBmgJaA9DCN+oFabviGxAlIaUUpRoFU1ABmgWR0CinkwcPvrodX2UKGgGaAloD0MID7dDw+JHbUCUhpRSlGgVTSsGaBZHQKKebxAB1cN1fZQoaAZoCWgPQwh6VPzfEd0wwJSGlFKUaBVNbwNoFkdAop9cEgW8AnV9lChoBmgJaA9DCBIR/kXQomxAlIaUUpRoFU1ABmgWR0Cin6Vfu1F6dX2UKGgGaAloD0MI5dGNsKjFUcCUhpRSlGgVTS4BaBZHQKKhoDK5kLB1fZQoaAZoCWgPQwjRdeEHZydrQJSGlFKUaBVNQAZoFkdAoqGiEg4ffXV9lChoBmgJaA9DCHVY4ZaPoFlAlIaUUpRoFU2ZBWgWR0Ciol9N34bkdX2UKGgGaAloD0MIBDdStkjNbECUhpRSlGgVTUAGaBZHQKKi4jafzz51fZQoaAZoCWgPQwhxVkRN9ARrQJSGlFKUaBVNQAZoFkdAoqbnH3lCC3V9lChoBmgJaA9DCH9ne/SGJzHAlIaUUpRoFU2TAmgWR0Cip56+evpydX2UKGgGaAloD0MIpddmYyW3aUCUhpRSlGgVTUAGaBZHQKKoJY2bXpZ1fZQoaAZoCWgPQwgrhqsDINJHQJSGlFKUaBVNwwNoFkdAosGbxCpm3HV9lChoBmgJaA9DCGGlgoqq8U9AlIaUUpRoFU2pBGgWR0Ciw0M5n13/dX2UKGgGaAloD0MIo3VUNcFFbUCUhpRSlGgVTUAGaBZHQKLFQw1R+Bp1fZQoaAZoCWgPQwhqErwhDQFrQJSGlFKUaBVNQAZoFkdAosZvKhcqv3V9lChoBmgJaA9DCPpgGRs6FW1AlIaUUpRoFU0UBmgWR0CixxQTufEodX2UKGgGaAloD0MIOWQD6WLUU8CUhpRSlGgVTW8BaBZHQKLHSjafzz51fZQoaAZoCWgPQwjpYtNKIahsQJSGlFKUaBVNQAZoFkdAos4QEOiFkHV9lChoBmgJaA9DCBdKJqd2Bj9AlIaUUpRoFU3ZA2gWR0CizyNYSxqxdX2UKGgGaAloD0MIm1Wfq60MWUCUhpRSlGgVTXUFaBZHQKLS7h7Vrh11fZQoaAZoCWgPQwjx1CMNbpprQJSGlFKUaBVNQAZoFkdAotMoEbHZK3V9lChoBmgJaA9DCLBx/bs+AW1AlIaUUpRoFU0mBmgWR0Ci0141pCa7dX2UKGgGaAloD0MICB7f3rUwbUCUhpRSlGgVTTMGaBZHQKLTYhbGFSN1fZQoaAZoCWgPQwhB1lOrr9pWwJSGlFKUaBVLZ2gWR0Ci1H3CTEBKdX2UKGgGaAloD0MIVRhbCPLya0CUhpRSlGgVTUAGaBZHQKLVsD/2kBV1fZQoaAZoCWgPQwiSWb3D7dNtQJSGlFKUaBVNKwZoFkdAotlez8gp0HV9lChoBmgJaA9DCBnJHqFmcl3AlIaUUpRoFUtAaBZHQKLbHgH/tIF1fZQoaAZoCWgPQwjc1EDzOWZqQJSGlFKUaBVNQAZoFkdAotsgz3yqdnV9lChoBmgJaA9DCCWTUztDGGxAlIaUUpRoFU1ABmgWR0Ci28LleWv9dX2UKGgGaAloD0MIr7Mh/0yYaUCUhpRSlGgVTUAGaBZHQKLcRmnO0LN1fZQoaAZoCWgPQwhy/iYUIghMQJSGlFKUaBVNoARoFkdAot0hR4yGjHV9lChoBmgJaA9DCFQfSN45M21AlIaUUpRoFU1ABmgWR0Ci3Z47q6e5dX2UKGgGaAloD0MIYd7jTBNdUMCUhpRSlGgVTSgBaBZHQKLeDHuJDVp1fZQoaAZoCWgPQwg4ZtmTQHVuQJSGlFKUaBVN0AVoFkdAot5r8tPHk3V9lChoBmgJaA9DCBiT/l4Kil5AlIaUUpRoFU3LBWgWR0Ci301eKKpDdX2UKGgGaAloD0MIfUCgM2lhbkCUhpRSlGgVTecFaBZHQKLhJjMmnfl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faca9dc0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faca9dc03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faca9dc0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faca9dc04c0>", "_build": "<function ActorCriticPolicy._build at 0x7faca9dc0550>", "forward": "<function ActorCriticPolicy.forward at 0x7faca9dc05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faca9dc0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7faca9dc0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faca9dc0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faca9dc0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faca9dc08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faca9db9cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670653910951476740, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEUG5z63dD+9P9wSPjJWyDvj7VW/AAAAAKDH7b1YVY4+AACAPxIVkT8AAAAAtAV8PgIAgD8AAAAAKFqFPokuhz74LYw+5z2VPm0ipD6XTrw+kJTmPi7uFD9nol0/AACAPwXjrj1JA2q8iMQ8PaZcfT04y1W/ABLLOVx3vz4bw1k+AAAAAChSkT8AIEK3NsNvPwB47bgAAAAARNpfPoXfYD5RRGc+eUtzPisWgz45ZpI+lyWsPlob1z6QLBI/0GxgPy+r0j7Kvaq8R7iXPheAULxtEFe/LgN/v+D9Mj1zw4A/AAAAAJDNjz+EAIA/EkoSP7ilX78AAAAAiPWRPuCdkz5uyJg+pRiiPiPZsD6Ee8c+5c7qPvCrEj/mZkk/AACAPyT77D20t989AiPuPe+MjLtP0I4/AABAtFQjqD4AAIC/AAAAALHfI7/qvhW/wAC6PAEAgL8AAAAAjqCmPvkCqT7Ms68+VhS9PicK0D4i5Oo+lBMJPznKJz8952A/AACAP2TNkz0MWp09pAr9Pda/7z2/IAu/38YOP+w/Kz4AAIC/AAAAAJnzjD9Mx/W9irPXPrXkfL8AAIA/bWidPg4ynz5ZxKQ+lM+uPkq4vj4sIdc+5zn9PnTFHj8CB1w/AACAPwoxJD5r0Ic8An6sPfoSB72LoWW+ZwO3PlCq/b4AAIC/AAAAABrvkD8AAAAA/Fc0Pv3/fz8AAAAAn2GlPm5Cpz75HK0+cqq3PnZhyD7gBuI+0AYFP+GmIz9Yz1c/AACAPyzM5z5vYxU98hklPC2Q77yjIhw/j9t0P5iypz7P/z0/AAAAAKP6RL4i9mi+4JfuvcfiZr0AAAAAUr3SPv8h1T6Kl9w+7gnqPohW/z5NAhA/1YIpP6/EUz8AAIA/AACAP2aL0r0o+Ki92jplPuU/hz2MMTK/B+Y9P+QDEz8AAIC/AAAAALxkjj8AAAAA6CxdP6JYHD8AAIA/p7qePglGnz6GBKM+FNKrPiB1uz71v9I+rEz2PmeYGD84OUw/AACAP2Ae8D6mjWq8e5EwPi0lhjr9/FG/AADAMgAA3rq5IJM9AACAP8BJkD8AAAAAxuE2PwEAgL8AAAAAy+aPPjuGjj5lRZA+z+aVPtwjoD6q/7A+CIfMPhrx/j447TY/AACAP9Z/JL7Rg5I9LBlFPnwJBT75siW/rGmJPghMFj8DAIC/AAAAAADqkD8AAAAAglQCPwEAgL8AAAAAI5bBPkfWwT6H48U+a33PPl+a4D6ziv0+PpoVP7+eOj8AAIA/AACAP81eIj8cJmW9JOpTPlZynz1cq1S/AABqNrxkm75YR8g+AACAPySXbD8uBu0+KPUuPgEAgL8AAAAAeKiNPqBDjz5N2JM+wWKcPjIOqj43wL8+sBDmPqg1Dz8EMUY/AACAPxqnmj68G/s8TBBgPrFKhr1cEwy/mq1qv0AdhTzj7/0+AACAP+T0WT/oRlG+JAQ0PwAAgD8AAAAAN7qlPsW5pT6swak+Qs+xPgBPvz4lBtU+BWL6PsPCGj/pQVI/AACAP7LNvj1Yw4e8QwscPvNulbymmPE+3KHkvK5KH78AI5C6AACAPwHXfD+FGoU+IJIFPdgBgD8AAIA/Vfe1Pn9puD4M674+jQvKPs/33T7f5/0+HaQUPy4mNT80vHc/AACAP3JpaD4oHO692eIwPmhRpTu7dk+/4f+dPkhc+D3F0dc+AAAAAPa9ij+gfl09GlZtP/3/fz8AAAAAEYCAPi6zgT7ldYY+DQOPPtpJnT4lTLM+NobWPmPCCz+Wxj8/AACAP1oxtj5pRKk9qDpRPhZwIr0bJaC+lkt3v7gWZr71Ank+AACAPwrYkD8AAAAAfuIlP/n/fz8AAAAABze5PnP8uT5Od74+9G/HPlsn1j5Uee8+390KP2MWLj8UFGs/AACAPxm5aT9jeGy9f8tjPqRl6zw4TlK/AICSOIBd0r7rI2o+AAAAAHo3kD8AADK2KEViP8RJ3L4AAAAA4aOVPlIelD7n15U+TmuePnAwrD5WW70+5v3WPkrm/T6nLyc/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdSDrqdV6X8CUhpRSlIwBbJRLqYwBdJRHQJOgJr/Khct1fZQoaAZoCWgPQwh3ZRcMritSQJSGlFKUaBVNQAZoFkdAk6JWjGkvb3V9lChoBmgJaA9DCNC1L6AX/E1AlIaUUpRoFU1ABmgWR0CTote/Yao/dX2UKGgGaAloD0MIx735DRPoW8CUhpRSlGgVSzBoFkdAk6RJKzzErHV9lChoBmgJaA9DCHL4pBMJ2lBAlIaUUpRoFU1ABmgWR0CTpinfEXLvdX2UKGgGaAloD0MIIzKs4o1SWsCUhpRSlGgVS5FoFkdAk6a8urZJ1HV9lChoBmgJaA9DCDwyVpv/lFVAlIaUUpRoFU1ABmgWR0CTpqfoA4n4dX2UKGgGaAloD0MI3BK54AwiXMCUhpRSlGgVS0BoFkdAk6i7JGOMl3V9lChoBmgJaA9DCBIxJZLo81NAlIaUUpRoFU1ABmgWR0CTqOpwS8J2dX2UKGgGaAloD0MIsffii/ayWsCUhpRSlGgVS1FoFkdAk6jBi9ZieHV9lChoBmgJaA9DCO25TE2CXlvAlIaUUpRoFUtEaBZHQJOqvjKgZjx1fZQoaAZoCWgPQwhdixagbV9cwJSGlFKUaBVLUmgWR0CTqzef7JnydX2UKGgGaAloD0MIjGoRUUweU8CUhpRSlGgVTeYCaBZHQJOv85CF9KF1fZQoaAZoCWgPQwjGo1TCE/lRQJSGlFKUaBVNQAZoFkdAk7F0daMaTHV9lChoBmgJaA9DCDzAkxYuR0bAlIaUUpRoFU27BGgWR0CUItYZ2pyZdX2UKGgGaAloD0MI7PtwkBBDSkCUhpRSlGgVTUAGaBZHQJQi2j+Jgst1fZQoaAZoCWgPQwhEUgslk4NWQJSGlFKUaBVNQAZoFkdAlCOZ6Uqx1XV9lChoBmgJaA9DCA0dO6jEr17AlIaUUpRoFUuJaBZHQJQkZSydFv11fZQoaAZoCWgPQwg/x0eLM/lXwJSGlFKUaBVLe2gWR0CUJyVUuL75dX2UKGgGaAloD0MITwgddAmvUkCUhpRSlGgVTUAGaBZHQJQt9gH/tIF1fZQoaAZoCWgPQwjryJHOwOhZQJSGlFKUaBVNQAZoFkdAlDHp9ZzPr3V9lChoBmgJaA9DCDMWTWcnCVrAlIaUUpRoFUtQaBZHQJQ0K34Kx9p1fZQoaAZoCWgPQwguHt5zYOFTQJSGlFKUaBVNQAZoFkdAlDQIfCAMD3V9lChoBmgJaA9DCM6pZACozlNAlIaUUpRoFU1ABmgWR0CUNPd+G47SdX2UKGgGaAloD0MIPl5Ih4fKTECUhpRSlGgVTUAGaBZHQJQ9y6MBIWh1fZQoaAZoCWgPQwhZFkz8UYJIQJSGlFKUaBVNQAZoFkdAlD4IfCAMD3V9lChoBmgJaA9DCEUqjC0EJFzAlIaUUpRoFUtSaBZHQJRAajua4MF1fZQoaAZoCWgPQwiFC3kEN9RSQJSGlFKUaBVNQAZoFkdAlEIdSZSeiHV9lChoBmgJaA9DCLOVl/xPu1rAlIaUUpRoFUtdaBZHQJRDK56MR6F1fZQoaAZoCWgPQwh96lil9KhLQJSGlFKUaBVNQAZoFkdAlERjnA6+4HV9lChoBmgJaA9DCAA6zJcX61rAlIaUUpRoFUspaBZHQJREZz2exwB1fZQoaAZoCWgPQwgiVKnZA85awJSGlFKUaBVLVWgWR0CURJ3hGYrsdX2UKGgGaAloD0MI3PY96q+OVECUhpRSlGgVTUAGaBZHQJRGnoA4n4R1fZQoaAZoCWgPQwgJbTmX4rtXQJSGlFKUaBVNQAZoFkdAlEhvkBCD3HV9lChoBmgJaA9DCDbOpiOAD1FAlIaUUpRoFU1ABmgWR0CUSOK4x1xLdX2UKGgGaAloD0MII79+iA00VkCUhpRSlGgVTUAGaBZHQJRNsofCAMF1fZQoaAZoCWgPQwiu8C4X8StXQJSGlFKUaBVNQAZoFkdAlFGhhQWN3nV9lChoBmgJaA9DCEBtVKcDBFhAlIaUUpRoFU1ABmgWR0CUUaTTvy9VdX2UKGgGaAloD0MIMjhKXp17VkCUhpRSlGgVTUAGaBZHQJRTKNcW0qp1fZQoaAZoCWgPQwgANiBCXBRYQJSGlFKUaBVNQAZoFkdAlFYCdSVGC3V9lChoBmgJaA9DCP1nzY+/SVzAlIaUUpRoFUtjaBZHQJRWE7uDzy11fZQoaAZoCWgPQwg/jubIyr1awJSGlFKUaBVLRGgWR0CUWANi6QNkdX2UKGgGaAloD0MIv7m/ety1QECUhpRSlGgVTUAGaBZHQJRc7Ve8f3h1fZQoaAZoCWgPQwgyPWGJB/RYwJSGlFKUaBVLWWgWR0CUzqH8TBZZdX2UKGgGaAloD0MIHauUnumHSUCUhpRSlGgVTUAGaBZHQJTSW7f51vF1fZQoaAZoCWgPQwi13m+046xQQJSGlFKUaBVNQAZoFkdAlNI7dnCfpXV9lChoBmgJaA9DCOenOA68T1/AlIaUUpRoFUuMaBZHQJTS0Djin511fZQoaAZoCWgPQwgdAkcCDUdYQJSGlFKUaBVNQAZoFkdAlNMsXenAI3V9lChoBmgJaA9DCCdMGM1KomDAlIaUUpRoFUuaaBZHQJTWvlA/s3R1fZQoaAZoCWgPQwgg66nVVwZWQJSGlFKUaBVNQAZoFkdAlNv+d07r9nV9lChoBmgJaA9DCGixFMlXa1vAlIaUUpRoFUsyaBZHQJTdfOTq0MR1fZQoaAZoCWgPQwjjxi3m55xNwJSGlFKUaBVN4QVoFkdAlN+zU/fO2XV9lChoBmgJaA9DCHSWWYRiilRAlIaUUpRoFU1ABmgWR0CU4pC4z7/GdX2UKGgGaAloD0MIJcreUs6wVECUhpRSlGgVTUAGaBZHQJTixAu7HyV1fZQoaAZoCWgPQwgUQDGyZNVTQJSGlFKUaBVNQAZoFkdAlOS2bwz+FXV9lChoBmgJaA9DCIwsmWN5lVzAlIaUUpRoFUsvaBZHQJTmDVlPJq91fZQoaAZoCWgPQwiuLqcExMRNQJSGlFKUaBVNQAZoFkdAlOZzJZGKAXV9lChoBmgJaA9DCOuLhLacM1VAlIaUUpRoFU1ABmgWR0CU5uS39aUzdX2UKGgGaAloD0MIxxAAHHu8T0CUhpRSlGgVTUAGaBZHQJTrtVbRne11fZQoaAZoCWgPQwghBrr2BY1bwJSGlFKUaBVLxWgWR0CU7MCw8nuzdX2UKGgGaAloD0MIll6bjZUPXMCUhpRSlGgVSz5oFkdAlO2VMZgogHV9lChoBmgJaA9DCKHbSxqjWUJAlIaUUpRoFU1ABmgWR0CU75xfv4M4dX2UKGgGaAloD0MIH7sLlBQCV0CUhpRSlGgVTUAGaBZHQJTvn863iJh1fZQoaAZoCWgPQwhbJy7HKzRVQJSGlFKUaBVNQAZoFkdAlPRHb212JXV9lChoBmgJaA9DCDHSi9r9AVNAlIaUUpRoFU1ABmgWR0CU9jiRnvlVdX2UKGgGaAloD0MIOs0C7Q5CW8CUhpRSlGgVS3FoFkdAlPeLah6By3V9lChoBmgJaA9DCHQlAtU/sFZAlIaUUpRoFU1ABmgWR0CVAUC1JDmbdX2UKGgGaAloD0MIfjZy3ZSLVkCUhpRSlGgVTUAGaBZHQJUBslzEJjV1fZQoaAZoCWgPQwh9dVWgFidVQJSGlFKUaBVNQAZoFkdAlQITcqOLi3V9lChoBmgJaA9DCDyInSl0dFrAlIaUUpRoFUtjaBZHQJUENqDbrTp1fZQoaAZoCWgPQwgi4Xt/g8ZYQJSGlFKUaBVNQAZoFkdAlQWr6UJOWXV9lChoBmgJaA9DCITTghd991/AlIaUUpRoFUtYaBZHQJUIMfwI+nt1fZQoaAZoCWgPQwihoBSt3EhZwJSGlFKUaBVLT2gWR0CVhP4XoC+2dX2UKGgGaAloD0MInKVkOQn5RkCUhpRSlGgVTUAGaBZHQJWG1JAdGRV1fZQoaAZoCWgPQwj4pumzA/tYQJSGlFKUaBVNQAZoFkdAlYkmNedCmnV9lChoBmgJaA9DCJsg6j4AgUvAlIaUUpRoFU0qBmgWR0CViz5hScbzdX2UKGgGaAloD0MILA5nfjV7U0CUhpRSlGgVTUAGaBZHQJWMHaBZpzt1fZQoaAZoCWgPQwhA3UCBd7BdwJSGlFKUaBVLWGgWR0CVjc7qY7aJdX2UKGgGaAloD0MIflcE/1vQXMCUhpRSlGgVS0doFkdAlY4hLbpNbnV9lChoBmgJaA9DCPhsHRzsdFVAlIaUUpRoFU1ABmgWR0CVj2WZ7XxwdX2UKGgGaAloD0MIj6hQ3VyCV0CUhpRSlGgVTUAGaBZHQJWP0idJ8OV1fZQoaAZoCWgPQwghdxGmKCpXQJSGlFKUaBVNQAZoFkdAlZYcHGCI13V9lChoBmgJaA9DCOId4EkL3FpAlIaUUpRoFU1ABmgWR0CVlus4T9KmdX2UKGgGaAloD0MIuJIdG4GSUUCUhpRSlGgVTUAGaBZHQJWZCbkOqed1fZQoaAZoCWgPQwhp4h3gSYRUQJSGlFKUaBVNQAZoFkdAlZkNpqREGHV9lChoBmgJaA9DCO5BCMiXylzAlIaUUpRoFUt6aBZHQJWZso5PuXx1fZQoaAZoCWgPQwjHSWHe4wJcQJSGlFKUaBVNQAZoFkdAlZ9lev6j33V9lChoBmgJaA9DCLcnSGx3gVtAlIaUUpRoFU1ABmgWR0CVoMggX/HYdX2UKGgGaAloD0MInPwWnSyvSMCUhpRSlGgVTVQDaBZHQJWiFdpqREF1fZQoaAZoCWgPQwg4+S06WbJcQJSGlFKUaBVNQAZoFkdAlarfykKu0XV9lChoBmgJaA9DCNAJoYMuKl1AlIaUUpRoFU1ABmgWR0CVq0AHVwxWdX2UKGgGaAloD0MInStKCcF9WUCUhpRSlGgVTUAGaBZHQJWtX67/XGx1fZQoaAZoCWgPQwikiAyreE5awJSGlFKUaBVLQ2gWR0CVrUMSK3uvdX2UKGgGaAloD0MIglX18juNVkCUhpRSlGgVTUAGaBZHQJWzvUjLSu11fZQoaAZoCWgPQwia0CSxpLRJQJSGlFKUaBVNQAZoFkdAlbWTlDF6zHV9lChoBmgJaA9DCPS/XIsW91rAlIaUUpRoFUs2aBZHQJW3J50KZ2J1fZQoaAZoCWgPQwjy0k1iEMpXQJSGlFKUaBVNQAZoFkdAlbxy83++/XV9lChoBmgJaA9DCLRYiuQr1FdAlIaUUpRoFU1ABmgWR0CVvOjSXt0FdX2UKGgGaAloD0MIkKLO3ENmXECUhpRSlGgVTUAGaBZHQJW+JUlzEJl1fZQoaAZoCWgPQwjpYtNKIWlVQJSGlFKUaBVNQAZoFkdAlb6PYvnKXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_walker.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1aaf05db31888528d513bf5977a3f56115ab3c74641df5e7eacd789d159bf9f4
3
- size 177295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:013ef50b49ffec823d2678f60286c0c6a1c08a03d055d85d2a5980b486b9fcb8
3
+ size 175197
ppo_walker/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73cf1ebe50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73cf1ebee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73cf1ebf70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73cf1f0040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f73cf1f00d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f73cf1f0160>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73cf1f01f0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f73cf1f0280>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73cf1f0310>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73cf1f03a0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73cf1f0430>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f73cf1e9450>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -46,13 +46,13 @@
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
- "n_envs": 32,
50
- "num_timesteps": 3014656,
51
- "_total_timesteps": 3000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
- "start_time": 1670650490791796794,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
@@ -61,34 +61,34 @@
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAACy9lT62rw++GQH4PpWznb1usk6/AACAswBGhrs+OCk/AACAP370kD/+/38/mt7SPt/bVT8AAAAAvIGTPsfNmT7VYKE+LTerPm7twD6I8uE+cP8HP0uyLz94a2U/AACAP7CvOj9jtrU9V7q1Ptydm7zayDy/j66ovxCp0b2gNQk/AACAP4Fpez8CAIC/YC1TP/0yHT4AAAAAg1eyPi+fsz7OTbg+7kfBPv5lzz6xaeo+TFgKPwxoMj9ow3w/AACAP68OID6oYja+GR0GPyqrib2/j1W/AP7jPK6iAT8jAIA/AACAPzRSkD8AAAAAg0EHP0f/f78AAAAASh6XPjOXlz5c5Zw+n+ykPoYarz5G0L8+5j/dPgBUCT+LsEw/AACAP0s2CT8A5EA91vEWPvHKlj0r5Ui+nB6SPkiJIr8AAAAAAAAAABL0Dj8AEMk+UA6Dvfj/fz8AAAAAmz/BPojMwj4ulMg+4KLVPlWC6j7OSAQ/LI4aP+DIOj/Urng/AACAPzBW2T4euBc9zcHQPg8QubzM3xW/DICKv1D2Rz3bLCE/AACAP9+AiT8CAIA/QNYOP/j/f78AAAAATi+xPhBvsT6EgrU+d3a+PvSizz5qY+0+ThgNP9skNj8AAIA/AACAPwXHGz9UthO7/CCyPnhMv71KOgq/L5mGviSw4b4BAIA/AAAAAHjd2j5X4Vs/iJB+PusREMAAAAAAQ3e3PsfCuD4gtr0+oebGPpYA2T6iDvM+dUEOP7ScMT8AAIA/AACAPzFa1z58Lb09Y1h5PsarJr2m3a2+/v9/v24gAr+Ah8G+AAAAALmiXD9VEF+/2IsBPvz/fz8AAAAAwA+tPnWHsD5idbg+iX3CPka00D6UyOQ+sg0DP9VxHz/i5Vs/AACAPzYlBD9dmBo9OdGmPnx8mTxX5yO/AACAv+Bsir4XZh8/AAAAAKfbdD8rx4e+fhY7P/3/fz8AAAAAcraWPkv8lz60rpw+Z2mlPiTdsj4lZcc+Kq/mPlgaDj8xt0Q/AACAP+w2rz6c5uI8wLMiPsmhij3ij1C/AABAs7DLJD0w2XC9AAAAAIsmkT8AAAAA8MEQPovWCr8AAIA/Pb16Pg3yeT5UUoA+8zaHPieFkz7cxKY+UiDFPgZk+T68RDg/AACAP0Jnpj0HHwm+sZ7fPv2DPj2AoFS/mBWYPbI19T6QdWs/AAAAAA4Vij8VHxG/408AP9ODBUAAAIA/jPeMPpA5jz5Qm5Y+b/+iPq4ItD5qb80+sXv1PuB4Fz/7m0s/AACAPxsQCj4cdhy+MgjaPgXX2DxKT0+/AAAAAExH2T4AAIA/AAAAAIQUkT8AAAAA3Pm7Pg0aEj4AAAAAI2yVPrU3mD5hmp8+zkqrPmpMvD6kjNQ+btn/PhyoIT/hTFg/AACAPxedbD8eA4G9nG1TPqDZSj0OvVW/AAAAAGwB9b5XD5M+AACAP8gQij86fya/zJNTPwEAgD8AAAAADSCMPhzLij5M6ow+j5mTPhe2nj499q8+YcbPPtpfBT8a/DY/AACAP9CeaD6MQda8w3GMPirA17wvygu+0rsvP9S5tb7X0KG/AACAP2s2kT/8/38/PD3kvvj/fz8AAAAA9mmqPkRZrD54kLE+lIi7PnAXzz4+7PE+hF4PPwubOD83mng/AACAP46odz+qkcQ8M43APuCI4r3/uEG/AACAv7QQ5b79/38/AAAAAAmJjT8fiiY+fDnUPgEAgD8AAAAA80auPnLUrj6NLbI+2jO8PjH+yz5E9+A+L7IEP49hLD9eXXo/AACAPxOy8j5NKxi6ncjgPqyIAb0sVhu//v9/v0wZsL58Dys/AACAP8ftgT8rAE8/1FVtPv3/fz8AAAAA7WWYPvlgnD48gqQ+AuSxPjTFxj62c+Y+j5cIP2YkMj+Wtm8/AACAP4J6kz5s2iO+eqTvPi1BhDyFvFW/AIDSuGqi2z6zxn0/AACAP4TNiz8co28+dOIaPsD/f78AAAAAi+mjPotFpT7ZRas+DNW0PuAMwz70k9g+RFL+PgDQHj+3ylM/AACAP5sypj7/qxA9EwhTPvZ1fD0ID7q+krjvvmikvr4JfaS9AACAP4qFgz/wdGe/UKGavfv/fz8AAAAAEBGdPrPZnj7naKQ+2iSuPpObvD7JSdM+Pb/2PkicGz+IUVs/AACAP5lSkj6puEk9kZeKPq+fo7vE2Y2+tFP8vrwMzL6tvIG+AAAAAGfOkD8AAAAAyBJPPgMAgD8AAAAAtUayPkw+sj5Ae7g+puq/Phakyz7Qtt8++C0CPwvkJj+gs3c/AACAP9TTAT6G6Qw9hqWSPg5ftjzaHrS+KsE2PwBxdr0AAIC/AAAAAJDzhj8AAIC/EMrKvfv/fz8AAAAApMmpPoXaqz73OrI+OYy/PlSQ1T7zevg+Pq4WP9/ANz/nkGw/AACAP6G8wT7X+dQ9NRC9PsUOgLuFClG+yCW5v5hg8L5nvus+AACAPxv7jj8AAAAAdLapvvX/f78AAAAAGminPsxOqT5ea68+ZKy6Ph7vyz5bG+g+EpEJP9gJJz/dWlM/AACAP6WgOj5mCg++tpD9PsGDdz0AvVW/AAAAALi8rD4AAIA/AAAAAOSZjz9MCGy+ROVQPqwcpz8AAIA/x36TPpYrlT4sUpg+XwufPsxzrD64LcI+rHLlPpgoET851kE/AACAP1jus742rS+97GJOPix4o7353go/7f9/Pyzl7L4AAIC/AAAAALbWjz8EAIA/Gsgov/n/f78AAIA/5D+6Pl5dvD5EW8M+TEvQPs5+5T4KwAE/H/kVP4g2Oj+RgX0/AACAP7jVZT7CYom6YhAEPrqAfT1ooJk7/f9/P+wC8b74/38/AAAAAIuTZz9BkQG+oFAfPpWxDr0AAIA/Y2y1Pi85tz75jrs+Jh3EPtzY0j55oeo+MqYJP8bvKj+4vnA/AACAP3MIeT47HHE8lWjBPoF1x72Az/O5AgCAv4TEIL85PIM+AAAAAGHQkz8BAIA/ICN7vvz/f78AAAAA76WgPlabpD5oAqs+2La0PmXcwj7Eqdg+TSr+PlHEHT+ZkFE/AACAP1YtKj/QgRK9176mPvBuDr0gAEK/b/J+P3jBkr5wGDC/AACAP/yThz+71Ae/yv1XPwEAgD8AAAAA6a6YPoqSmT4mRp4+JaenPrGQtT7W9Mo+PWfvPsUtGj8sV1Y/AACAP7KPjz7LVBY9/ECPPnS1u71NZ6q+FidBvzxwxr58nVk+AACAP6yDiT+eHtU+YPbnvgEAgD8AAAAAbIafPqi+oT4BwKc+yPmxPhHPwj5JR90+qXUEP/lBKj8+xl0/AACAP9GoFz+o4+q9yMTXPtMKyD2nvFW/AMCvOIDgT76dVzI/AAAAAHLYjz8AAEC2OCgGP6iOf78AAAAAkt6OPjsdkD6BWJU+PIaePl3krD4uJMI+2rTlPu/8Dj/ldkU/AACAP8Dmwj6pktI9Xtm7PpLKpb1megy+4xiwvwy6Gb8BIX8+AAAAABXXhj/8/3+/rHUkPwEAgD8AAAAAquWaPspmmj4wVp0+VqikPoCksz6D18o+hMnuPuMOGj8OHmA/AACAP3025z6xDMw9+uCxPuamsDzZSpe+hKicvvBJIL///3+/AAAAAINwFD9B1ni/WC8av6uqKrMAAAAAmiu6Pph2vD4qScM+IOXMPhQD3j5cVvw++YoVP6RQQT8AAIA/AACAP9NrzT5UUKk90AlyPskh6r3bXEi/Cv8qP7gNTL7//3+/AAAAANGnXT8IUeQ9KA/qPRM5fb8AAIA/YkqWPo0vmD7Y9J0+37ioPh0Ruj4b8tQ+r6b3PkdtFz/Hn0Y/AACAP8vTnj77SvI9EyxePh/cdL30Yxw8AgCAvzrFL79gxxM9AACAP7lXXT/+/3+/wDUkvQMAgD8AAAAACOCiPqAxpz4Dua8+Dmm9PkJbzz6Sl+4+dIMQPyYBNj+B9nM/AACAP6/qHz/skaE9/Ux7Pr2qzjySm8W+7y3rvpw4Ab/9/38/AAAAAJrCFD+iB3c+Fk3bPqj6NT8AAAAAUVCwPoOqsT7f2bU+jNi9Posfzz5ppOc+wwMHP++6Jj8rjWQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
- ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
- "_current_progress_remaining": -0.004885333333333408,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDMufbwsuQ0CUhpRSlIwBbJRNeQSMAXSUR0CiLSF36hxpdX2UKGgGaAloD0MINEjBU8jHRMCUhpRSlGgVTS4CaBZHQKIvG580DU51fZQoaAZoCWgPQwjw3Hu45G1mQJSGlFKUaBVNQAZoFkdAoi/2BreqJnV9lChoBmgJaA9DCJT3cTRH+mZAlIaUUpRoFU1ABmgWR0CiL/TH80k4dX2UKGgGaAloD0MI81Zdh2pRXsCUhpRSlGgVS1toFkdAojJYJgLJCHV9lChoBmgJaA9DCBo2yvrNaGxAlIaUUpRoFU1ABmgWR0CiNFecQRPHdX2UKGgGaAloD0MIMV2I1Z9ka0CUhpRSlGgVTUAGaBZHQKI0lxOtW+51fZQoaAZoCWgPQwjiWYKMgGxewJSGlFKUaBVLWGgWR0CiNL2KVII4dX2UKGgGaAloD0MIIXh8e9ebakCUhpRSlGgVTUAGaBZHQKI1K2kSElF1fZQoaAZoCWgPQwhcGyrGeb9nQJSGlFKUaBVNQAZoFkdAojU5E6T4cnV9lChoBmgJaA9DCA2nzM03N2tAlIaUUpRoFU1ABmgWR0CiNar8zhxYdX2UKGgGaAloD0MIV9C0xMofbECUhpRSlGgVTUAGaBZHQKI2absF+ux1fZQoaAZoCWgPQwj0UrExrxZnQJSGlFKUaBVNQAZoFkdAojaGMGX5WXV9lChoBmgJaA9DCFWhgVg2slDAlIaUUpRoFU2kAWgWR0CiOEhgmZ3LdX2UKGgGaAloD0MIjV94Jcm7akCUhpRSlGgVTUAGaBZHQKI5XC6Ymb91fZQoaAZoCWgPQwhtrS8S2oZmQJSGlFKUaBVNQAZoFkdAojlzhLoOhHV9lChoBmgJaA9DCBh47j1cVFTAlIaUUpRoFUumaBZHQKI5lZEDyOJ1fZQoaAZoCWgPQwhmEvWCT8tpQJSGlFKUaBVNQAZoFkdAojn7Q5WBBnV9lChoBmgJaA9DCLqe6LrwPFVAlIaUUpRoFU16BWgWR0CiO9WjXWe6dX2UKGgGaAloD0MITG4UWet2ZkCUhpRSlGgVTUAGaBZHQKI7/hhpg1F1fZQoaAZoCWgPQwg9nMB0WjppQJSGlFKUaBVNQAZoFkdAojw4CZF5OnV9lChoBmgJaA9DCNcXCW25g2xAlIaUUpRoFU1ABmgWR0CiPkqCxu89dX2UKGgGaAloD0MIPwCpTRyRakCUhpRSlGgVTUAGaBZHQKI/pDn/1g91fZQoaAZoCWgPQwgH8BZIUHNUwJSGlFKUaBVL+GgWR0CiQJUAcT8HdX2UKGgGaAloD0MI+FROe0pzbUCUhpRSlGgVTSwGaBZHQKJBpPv8ZUF1fZQoaAZoCWgPQwgg7BSrhthpQJSGlFKUaBVNQAZoFkdAokJLzoUzsXV9lChoBmgJaA9DCNl4sMVuuUTAlIaUUpRoFU3IAWgWR0CiQp7wazeGdX2UKGgGaAloD0MIBtUGJ6I9akCUhpRSlGgVTUAGaBZHQKJCym0E5hl1fZQoaAZoCWgPQwjik04kGD5rQJSGlFKUaBVNQAZoFkdAolz08DB/JHV9lChoBmgJaA9DCKOs30xMMmlAlIaUUpRoFU1ABmgWR0CiXaS8zyjIdX2UKGgGaAloD0MIQWZn0TvuakCUhpRSlGgVTUAGaBZHQKJdv7TlT3t1fZQoaAZoCWgPQwhmSYCaWnBFwJSGlFKUaBVNrwFoFkdAol5Z1ie/YnV9lChoBmgJaA9DCF73ViSmsmlAlIaUUpRoFU1ABmgWR0CiYF9CNS62dX2UKGgGaAloD0MI6iPwhx++a0CUhpRSlGgVTUAGaBZHQKJhnUnXumd1fZQoaAZoCWgPQwiVumQco29oQJSGlFKUaBVNQAZoFkdAomJ8d/8VHnV9lChoBmgJaA9DCB07qMR1cEfAlIaUUpRoFU3HAWgWR0CiZRBVU+9rdX2UKGgGaAloD0MIgqynVt8sbECUhpRSlGgVTUAGaBZHQKJliQlKK511fZQoaAZoCWgPQwh002acBhlnQJSGlFKUaBVNQAZoFkdAomWoE2YOUnV9lChoBmgJaA9DCHSXxFkRI2xAlIaUUpRoFU1ABmgWR0CiZuiSidrgdX2UKGgGaAloD0MIOL2L9+PHbUCUhpRSlGgVTSAGaBZHQKJtbMpPRAt1fZQoaAZoCWgPQwieYtUgzIhQwJSGlFKUaBVNZwFoFkdAom6jFS88LnV9lChoBmgJaA9DCGR0QBJ2lmhAlIaUUpRoFU1ABmgWR0CicGH6VMVUdX2UKGgGaAloD0MIG2g+5+71bECUhpRSlGgVTUAGaBZHQKJxNlbNbC91fZQoaAZoCWgPQwhtyD8ziCVuQJSGlFKUaBVN3AVoFkdAonLqYoiLVHV9lChoBmgJaA9DCKyL22gAc21AlIaUUpRoFU01BmgWR0CidZFhw2l3dX2UKGgGaAloD0MIRL+2fvqxakCUhpRSlGgVTUAGaBZHQKJ1/lOoHcF1fZQoaAZoCWgPQwiOlZhnJc0kQJSGlFKUaBVN5AJoFkdAonYu47Rv33V9lChoBmgJaA9DCFUwKqkTRG1AlIaUUpRoFU08BmgWR0CidmF+NLlFdX2UKGgGaAloD0MI6wCIu/qea0CUhpRSlGgVTUAGaBZHQKJ25qwhW5p1fZQoaAZoCWgPQwiMD7OX7V5tQJSGlFKUaBVNQAZoFkdAoo5LYh+vyXV9lChoBmgJaA9DCK32sBcKnWxAlIaUUpRoFU1ABmgWR0CikDHe7+UAdX2UKGgGaAloD0MImUf+YGDqaECUhpRSlGgVTUAGaBZHQKKRTxXnyNJ1fZQoaAZoCWgPQwjwoxr2e5ZsQJSGlFKUaBVNQAZoFkdAopFoEKVpsXV9lChoBmgJaA9DCJyJ6UKsKGpAlIaUUpRoFU1ABmgWR0CikYpOvdM1dX2UKGgGaAloD0MIUIvBw7ScVsCUhpRSlGgVS4poFkdAopICSgXdkHV9lChoBmgJaA9DCOYg6GhV4m1AlIaUUpRoFU0KBmgWR0Cikobrs0HhdX2UKGgGaAloD0MIa0qyDkfxaECUhpRSlGgVTUAGaBZHQKKTzPVurIZ1fZQoaAZoCWgPQwhUxr/POKNtQJSGlFKUaBVNOwZoFkdAopYfDNyHVXV9lChoBmgJaA9DCAZmhSLdHmxAlIaUUpRoFU1ABmgWR0Cil5NI065odX2UKGgGaAloD0MI51Wd1YIWa0CUhpRSlGgVTUAGaBZHQKKYjDO1OTJ1fZQoaAZoCWgPQwjF5uPaUFJtQJSGlFKUaBVNFQZoFkdAopmcfs/puHV9lChoBmgJaA9DCBdH5SbqAmpAlIaUUpRoFU1ABmgWR0CimayjgydndX2UKGgGaAloD0MIKeeLvZd4aECUhpRSlGgVTUAGaBZHQKKanAeJYT11fZQoaAZoCWgPQwgB4NizZ8xtQJSGlFKUaBVN8AVoFkdAopztNUOuq3V9lChoBmgJaA9DCN+oFabviGxAlIaUUpRoFU1ABmgWR0CinkwcPvrodX2UKGgGaAloD0MID7dDw+JHbUCUhpRSlGgVTSsGaBZHQKKebxAB1cN1fZQoaAZoCWgPQwh6VPzfEd0wwJSGlFKUaBVNbwNoFkdAop9cEgW8AnV9lChoBmgJaA9DCBIR/kXQomxAlIaUUpRoFU1ABmgWR0Cin6Vfu1F6dX2UKGgGaAloD0MI5dGNsKjFUcCUhpRSlGgVTS4BaBZHQKKhoDK5kLB1fZQoaAZoCWgPQwjRdeEHZydrQJSGlFKUaBVNQAZoFkdAoqGiEg4ffXV9lChoBmgJaA9DCHVY4ZaPoFlAlIaUUpRoFU2ZBWgWR0Ciol9N34bkdX2UKGgGaAloD0MIBDdStkjNbECUhpRSlGgVTUAGaBZHQKKi4jafzz51fZQoaAZoCWgPQwhxVkRN9ARrQJSGlFKUaBVNQAZoFkdAoqbnH3lCC3V9lChoBmgJaA9DCH9ne/SGJzHAlIaUUpRoFU2TAmgWR0Cip56+evpydX2UKGgGaAloD0MIpddmYyW3aUCUhpRSlGgVTUAGaBZHQKKoJY2bXpZ1fZQoaAZoCWgPQwgrhqsDINJHQJSGlFKUaBVNwwNoFkdAosGbxCpm3HV9lChoBmgJaA9DCGGlgoqq8U9AlIaUUpRoFU2pBGgWR0Ciw0M5n13/dX2UKGgGaAloD0MIo3VUNcFFbUCUhpRSlGgVTUAGaBZHQKLFQw1R+Bp1fZQoaAZoCWgPQwhqErwhDQFrQJSGlFKUaBVNQAZoFkdAosZvKhcqv3V9lChoBmgJaA9DCPpgGRs6FW1AlIaUUpRoFU0UBmgWR0CixxQTufEodX2UKGgGaAloD0MIOWQD6WLUU8CUhpRSlGgVTW8BaBZHQKLHSjafzz51fZQoaAZoCWgPQwjpYtNKIahsQJSGlFKUaBVNQAZoFkdAos4QEOiFkHV9lChoBmgJaA9DCBdKJqd2Bj9AlIaUUpRoFU3ZA2gWR0CizyNYSxqxdX2UKGgGaAloD0MIm1Wfq60MWUCUhpRSlGgVTXUFaBZHQKLS7h7Vrh11fZQoaAZoCWgPQwjx1CMNbpprQJSGlFKUaBVNQAZoFkdAotMoEbHZK3V9lChoBmgJaA9DCLBx/bs+AW1AlIaUUpRoFU0mBmgWR0Ci0141pCa7dX2UKGgGaAloD0MICB7f3rUwbUCUhpRSlGgVTTMGaBZHQKLTYhbGFSN1fZQoaAZoCWgPQwhB1lOrr9pWwJSGlFKUaBVLZ2gWR0Ci1H3CTEBKdX2UKGgGaAloD0MIVRhbCPLya0CUhpRSlGgVTUAGaBZHQKLVsD/2kBV1fZQoaAZoCWgPQwiSWb3D7dNtQJSGlFKUaBVNKwZoFkdAotlez8gp0HV9lChoBmgJaA9DCBnJHqFmcl3AlIaUUpRoFUtAaBZHQKLbHgH/tIF1fZQoaAZoCWgPQwjc1EDzOWZqQJSGlFKUaBVNQAZoFkdAotsgz3yqdnV9lChoBmgJaA9DCCWTUztDGGxAlIaUUpRoFU1ABmgWR0Ci28LleWv9dX2UKGgGaAloD0MIr7Mh/0yYaUCUhpRSlGgVTUAGaBZHQKLcRmnO0LN1fZQoaAZoCWgPQwhy/iYUIghMQJSGlFKUaBVNoARoFkdAot0hR4yGjHV9lChoBmgJaA9DCFQfSN45M21AlIaUUpRoFU1ABmgWR0Ci3Z47q6e5dX2UKGgGaAloD0MIYd7jTBNdUMCUhpRSlGgVTSgBaBZHQKLeDHuJDVp1fZQoaAZoCWgPQwg4ZtmTQHVuQJSGlFKUaBVN0AVoFkdAot5r8tPHk3V9lChoBmgJaA9DCBiT/l4Kil5AlIaUUpRoFU3LBWgWR0Ci301eKKpDdX2UKGgGaAloD0MIfUCgM2lhbkCUhpRSlGgVTecFaBZHQKLhJjMmnfl1ZS4="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
- "_n_updates": 368,
84
- "n_steps": 1024,
85
  "gamma": 0.999,
86
- "gae_lambda": 0.98,
87
- "ent_coef": 0.01,
88
  "vf_coef": 0.5,
89
  "max_grad_norm": 0.5,
90
  "batch_size": 64,
91
- "n_epochs": 4,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faca9dc0310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faca9dc03a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faca9dc0430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faca9dc04c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faca9dc0550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faca9dc05e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faca9dc0670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faca9dc0700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faca9dc0790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faca9dc0820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faca9dc08b0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7faca9db9cf0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
+ "n_envs": 16,
50
+ "num_timesteps": 1015808,
51
+ "_total_timesteps": 1000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
+ "start_time": 1670653910951476740,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
 
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEUG5z63dD+9P9wSPjJWyDvj7VW/AAAAAKDH7b1YVY4+AACAPxIVkT8AAAAAtAV8PgIAgD8AAAAAKFqFPokuhz74LYw+5z2VPm0ipD6XTrw+kJTmPi7uFD9nol0/AACAPwXjrj1JA2q8iMQ8PaZcfT04y1W/ABLLOVx3vz4bw1k+AAAAAChSkT8AIEK3NsNvPwB47bgAAAAARNpfPoXfYD5RRGc+eUtzPisWgz45ZpI+lyWsPlob1z6QLBI/0GxgPy+r0j7Kvaq8R7iXPheAULxtEFe/LgN/v+D9Mj1zw4A/AAAAAJDNjz+EAIA/EkoSP7ilX78AAAAAiPWRPuCdkz5uyJg+pRiiPiPZsD6Ee8c+5c7qPvCrEj/mZkk/AACAPyT77D20t989AiPuPe+MjLtP0I4/AABAtFQjqD4AAIC/AAAAALHfI7/qvhW/wAC6PAEAgL8AAAAAjqCmPvkCqT7Ms68+VhS9PicK0D4i5Oo+lBMJPznKJz8952A/AACAP2TNkz0MWp09pAr9Pda/7z2/IAu/38YOP+w/Kz4AAIC/AAAAAJnzjD9Mx/W9irPXPrXkfL8AAIA/bWidPg4ynz5ZxKQ+lM+uPkq4vj4sIdc+5zn9PnTFHj8CB1w/AACAPwoxJD5r0Ic8An6sPfoSB72LoWW+ZwO3PlCq/b4AAIC/AAAAABrvkD8AAAAA/Fc0Pv3/fz8AAAAAn2GlPm5Cpz75HK0+cqq3PnZhyD7gBuI+0AYFP+GmIz9Yz1c/AACAPyzM5z5vYxU98hklPC2Q77yjIhw/j9t0P5iypz7P/z0/AAAAAKP6RL4i9mi+4JfuvcfiZr0AAAAAUr3SPv8h1T6Kl9w+7gnqPohW/z5NAhA/1YIpP6/EUz8AAIA/AACAP2aL0r0o+Ki92jplPuU/hz2MMTK/B+Y9P+QDEz8AAIC/AAAAALxkjj8AAAAA6CxdP6JYHD8AAIA/p7qePglGnz6GBKM+FNKrPiB1uz71v9I+rEz2PmeYGD84OUw/AACAP2Ae8D6mjWq8e5EwPi0lhjr9/FG/AADAMgAA3rq5IJM9AACAP8BJkD8AAAAAxuE2PwEAgL8AAAAAy+aPPjuGjj5lRZA+z+aVPtwjoD6q/7A+CIfMPhrx/j447TY/AACAP9Z/JL7Rg5I9LBlFPnwJBT75siW/rGmJPghMFj8DAIC/AAAAAADqkD8AAAAAglQCPwEAgL8AAAAAI5bBPkfWwT6H48U+a33PPl+a4D6ziv0+PpoVP7+eOj8AAIA/AACAP81eIj8cJmW9JOpTPlZynz1cq1S/AABqNrxkm75YR8g+AACAPySXbD8uBu0+KPUuPgEAgL8AAAAAeKiNPqBDjz5N2JM+wWKcPjIOqj43wL8+sBDmPqg1Dz8EMUY/AACAPxqnmj68G/s8TBBgPrFKhr1cEwy/mq1qv0AdhTzj7/0+AACAP+T0WT/oRlG+JAQ0PwAAgD8AAAAAN7qlPsW5pT6swak+Qs+xPgBPvz4lBtU+BWL6PsPCGj/pQVI/AACAP7LNvj1Yw4e8QwscPvNulbymmPE+3KHkvK5KH78AI5C6AACAPwHXfD+FGoU+IJIFPdgBgD8AAIA/Vfe1Pn9puD4M674+jQvKPs/33T7f5/0+HaQUPy4mNT80vHc/AACAP3JpaD4oHO692eIwPmhRpTu7dk+/4f+dPkhc+D3F0dc+AAAAAPa9ij+gfl09GlZtP/3/fz8AAAAAEYCAPi6zgT7ldYY+DQOPPtpJnT4lTLM+NobWPmPCCz+Wxj8/AACAP1oxtj5pRKk9qDpRPhZwIr0bJaC+lkt3v7gWZr71Ank+AACAPwrYkD8AAAAAfuIlP/n/fz8AAAAABze5PnP8uT5Od74+9G/HPlsn1j5Uee8+390KP2MWLj8UFGs/AACAPxm5aT9jeGy9f8tjPqRl6zw4TlK/AICSOIBd0r7rI2o+AAAAAHo3kD8AADK2KEViP8RJ3L4AAAAA4aOVPlIelD7n15U+TmuePnAwrD5WW70+5v3WPkrm/T6nLyc/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.015808000000000044,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdSDrqdV6X8CUhpRSlIwBbJRLqYwBdJRHQJOgJr/Khct1fZQoaAZoCWgPQwh3ZRcMritSQJSGlFKUaBVNQAZoFkdAk6JWjGkvb3V9lChoBmgJaA9DCNC1L6AX/E1AlIaUUpRoFU1ABmgWR0CTote/Yao/dX2UKGgGaAloD0MIx735DRPoW8CUhpRSlGgVSzBoFkdAk6RJKzzErHV9lChoBmgJaA9DCHL4pBMJ2lBAlIaUUpRoFU1ABmgWR0CTpinfEXLvdX2UKGgGaAloD0MIIzKs4o1SWsCUhpRSlGgVS5FoFkdAk6a8urZJ1HV9lChoBmgJaA9DCDwyVpv/lFVAlIaUUpRoFU1ABmgWR0CTpqfoA4n4dX2UKGgGaAloD0MI3BK54AwiXMCUhpRSlGgVS0BoFkdAk6i7JGOMl3V9lChoBmgJaA9DCBIxJZLo81NAlIaUUpRoFU1ABmgWR0CTqOpwS8J2dX2UKGgGaAloD0MIsffii/ayWsCUhpRSlGgVS1FoFkdAk6jBi9ZieHV9lChoBmgJaA9DCO25TE2CXlvAlIaUUpRoFUtEaBZHQJOqvjKgZjx1fZQoaAZoCWgPQwhdixagbV9cwJSGlFKUaBVLUmgWR0CTqzef7JnydX2UKGgGaAloD0MIjGoRUUweU8CUhpRSlGgVTeYCaBZHQJOv85CF9KF1fZQoaAZoCWgPQwjGo1TCE/lRQJSGlFKUaBVNQAZoFkdAk7F0daMaTHV9lChoBmgJaA9DCDzAkxYuR0bAlIaUUpRoFU27BGgWR0CUItYZ2pyZdX2UKGgGaAloD0MI7PtwkBBDSkCUhpRSlGgVTUAGaBZHQJQi2j+Jgst1fZQoaAZoCWgPQwhEUgslk4NWQJSGlFKUaBVNQAZoFkdAlCOZ6Uqx1XV9lChoBmgJaA9DCA0dO6jEr17AlIaUUpRoFUuJaBZHQJQkZSydFv11fZQoaAZoCWgPQwg/x0eLM/lXwJSGlFKUaBVLe2gWR0CUJyVUuL75dX2UKGgGaAloD0MITwgddAmvUkCUhpRSlGgVTUAGaBZHQJQt9gH/tIF1fZQoaAZoCWgPQwjryJHOwOhZQJSGlFKUaBVNQAZoFkdAlDHp9ZzPr3V9lChoBmgJaA9DCDMWTWcnCVrAlIaUUpRoFUtQaBZHQJQ0K34Kx9p1fZQoaAZoCWgPQwguHt5zYOFTQJSGlFKUaBVNQAZoFkdAlDQIfCAMD3V9lChoBmgJaA9DCM6pZACozlNAlIaUUpRoFU1ABmgWR0CUNPd+G47SdX2UKGgGaAloD0MIPl5Ih4fKTECUhpRSlGgVTUAGaBZHQJQ9y6MBIWh1fZQoaAZoCWgPQwhZFkz8UYJIQJSGlFKUaBVNQAZoFkdAlD4IfCAMD3V9lChoBmgJaA9DCEUqjC0EJFzAlIaUUpRoFUtSaBZHQJRAajua4MF1fZQoaAZoCWgPQwiFC3kEN9RSQJSGlFKUaBVNQAZoFkdAlEIdSZSeiHV9lChoBmgJaA9DCLOVl/xPu1rAlIaUUpRoFUtdaBZHQJRDK56MR6F1fZQoaAZoCWgPQwh96lil9KhLQJSGlFKUaBVNQAZoFkdAlERjnA6+4HV9lChoBmgJaA9DCAA6zJcX61rAlIaUUpRoFUspaBZHQJREZz2exwB1fZQoaAZoCWgPQwgiVKnZA85awJSGlFKUaBVLVWgWR0CURJ3hGYrsdX2UKGgGaAloD0MI3PY96q+OVECUhpRSlGgVTUAGaBZHQJRGnoA4n4R1fZQoaAZoCWgPQwgJbTmX4rtXQJSGlFKUaBVNQAZoFkdAlEhvkBCD3HV9lChoBmgJaA9DCDbOpiOAD1FAlIaUUpRoFU1ABmgWR0CUSOK4x1xLdX2UKGgGaAloD0MII79+iA00VkCUhpRSlGgVTUAGaBZHQJRNsofCAMF1fZQoaAZoCWgPQwiu8C4X8StXQJSGlFKUaBVNQAZoFkdAlFGhhQWN3nV9lChoBmgJaA9DCEBtVKcDBFhAlIaUUpRoFU1ABmgWR0CUUaTTvy9VdX2UKGgGaAloD0MIMjhKXp17VkCUhpRSlGgVTUAGaBZHQJRTKNcW0qp1fZQoaAZoCWgPQwgANiBCXBRYQJSGlFKUaBVNQAZoFkdAlFYCdSVGC3V9lChoBmgJaA9DCP1nzY+/SVzAlIaUUpRoFUtjaBZHQJRWE7uDzy11fZQoaAZoCWgPQwg/jubIyr1awJSGlFKUaBVLRGgWR0CUWANi6QNkdX2UKGgGaAloD0MIv7m/ety1QECUhpRSlGgVTUAGaBZHQJRc7Ve8f3h1fZQoaAZoCWgPQwgyPWGJB/RYwJSGlFKUaBVLWWgWR0CUzqH8TBZZdX2UKGgGaAloD0MIHauUnumHSUCUhpRSlGgVTUAGaBZHQJTSW7f51vF1fZQoaAZoCWgPQwi13m+046xQQJSGlFKUaBVNQAZoFkdAlNI7dnCfpXV9lChoBmgJaA9DCOenOA68T1/AlIaUUpRoFUuMaBZHQJTS0Djin511fZQoaAZoCWgPQwgdAkcCDUdYQJSGlFKUaBVNQAZoFkdAlNMsXenAI3V9lChoBmgJaA9DCCdMGM1KomDAlIaUUpRoFUuaaBZHQJTWvlA/s3R1fZQoaAZoCWgPQwgg66nVVwZWQJSGlFKUaBVNQAZoFkdAlNv+d07r9nV9lChoBmgJaA9DCGixFMlXa1vAlIaUUpRoFUsyaBZHQJTdfOTq0MR1fZQoaAZoCWgPQwjjxi3m55xNwJSGlFKUaBVN4QVoFkdAlN+zU/fO2XV9lChoBmgJaA9DCHSWWYRiilRAlIaUUpRoFU1ABmgWR0CU4pC4z7/GdX2UKGgGaAloD0MIJcreUs6wVECUhpRSlGgVTUAGaBZHQJTixAu7HyV1fZQoaAZoCWgPQwgUQDGyZNVTQJSGlFKUaBVNQAZoFkdAlOS2bwz+FXV9lChoBmgJaA9DCIwsmWN5lVzAlIaUUpRoFUsvaBZHQJTmDVlPJq91fZQoaAZoCWgPQwiuLqcExMRNQJSGlFKUaBVNQAZoFkdAlOZzJZGKAXV9lChoBmgJaA9DCOuLhLacM1VAlIaUUpRoFU1ABmgWR0CU5uS39aUzdX2UKGgGaAloD0MIxxAAHHu8T0CUhpRSlGgVTUAGaBZHQJTrtVbRne11fZQoaAZoCWgPQwghBrr2BY1bwJSGlFKUaBVLxWgWR0CU7MCw8nuzdX2UKGgGaAloD0MIll6bjZUPXMCUhpRSlGgVSz5oFkdAlO2VMZgogHV9lChoBmgJaA9DCKHbSxqjWUJAlIaUUpRoFU1ABmgWR0CU75xfv4M4dX2UKGgGaAloD0MIH7sLlBQCV0CUhpRSlGgVTUAGaBZHQJTvn863iJh1fZQoaAZoCWgPQwhbJy7HKzRVQJSGlFKUaBVNQAZoFkdAlPRHb212JXV9lChoBmgJaA9DCDHSi9r9AVNAlIaUUpRoFU1ABmgWR0CU9jiRnvlVdX2UKGgGaAloD0MIOs0C7Q5CW8CUhpRSlGgVS3FoFkdAlPeLah6By3V9lChoBmgJaA9DCHQlAtU/sFZAlIaUUpRoFU1ABmgWR0CVAUC1JDmbdX2UKGgGaAloD0MIfjZy3ZSLVkCUhpRSlGgVTUAGaBZHQJUBslzEJjV1fZQoaAZoCWgPQwh9dVWgFidVQJSGlFKUaBVNQAZoFkdAlQITcqOLi3V9lChoBmgJaA9DCDyInSl0dFrAlIaUUpRoFUtjaBZHQJUENqDbrTp1fZQoaAZoCWgPQwgi4Xt/g8ZYQJSGlFKUaBVNQAZoFkdAlQWr6UJOWXV9lChoBmgJaA9DCITTghd991/AlIaUUpRoFUtYaBZHQJUIMfwI+nt1fZQoaAZoCWgPQwihoBSt3EhZwJSGlFKUaBVLT2gWR0CVhP4XoC+2dX2UKGgGaAloD0MInKVkOQn5RkCUhpRSlGgVTUAGaBZHQJWG1JAdGRV1fZQoaAZoCWgPQwj4pumzA/tYQJSGlFKUaBVNQAZoFkdAlYkmNedCmnV9lChoBmgJaA9DCJsg6j4AgUvAlIaUUpRoFU0qBmgWR0CViz5hScbzdX2UKGgGaAloD0MILA5nfjV7U0CUhpRSlGgVTUAGaBZHQJWMHaBZpzt1fZQoaAZoCWgPQwhA3UCBd7BdwJSGlFKUaBVLWGgWR0CVjc7qY7aJdX2UKGgGaAloD0MIflcE/1vQXMCUhpRSlGgVS0doFkdAlY4hLbpNbnV9lChoBmgJaA9DCPhsHRzsdFVAlIaUUpRoFU1ABmgWR0CVj2WZ7XxwdX2UKGgGaAloD0MIj6hQ3VyCV0CUhpRSlGgVTUAGaBZHQJWP0idJ8OV1fZQoaAZoCWgPQwghdxGmKCpXQJSGlFKUaBVNQAZoFkdAlZYcHGCI13V9lChoBmgJaA9DCOId4EkL3FpAlIaUUpRoFU1ABmgWR0CVlus4T9KmdX2UKGgGaAloD0MIuJIdG4GSUUCUhpRSlGgVTUAGaBZHQJWZCbkOqed1fZQoaAZoCWgPQwhp4h3gSYRUQJSGlFKUaBVNQAZoFkdAlZkNpqREGHV9lChoBmgJaA9DCO5BCMiXylzAlIaUUpRoFUt6aBZHQJWZso5PuXx1fZQoaAZoCWgPQwjHSWHe4wJcQJSGlFKUaBVNQAZoFkdAlZ9lev6j33V9lChoBmgJaA9DCLcnSGx3gVtAlIaUUpRoFU1ABmgWR0CVoMggX/HYdX2UKGgGaAloD0MInPwWnSyvSMCUhpRSlGgVTVQDaBZHQJWiFdpqREF1fZQoaAZoCWgPQwg4+S06WbJcQJSGlFKUaBVNQAZoFkdAlarfykKu0XV9lChoBmgJaA9DCNAJoYMuKl1AlIaUUpRoFU1ABmgWR0CVq0AHVwxWdX2UKGgGaAloD0MInStKCcF9WUCUhpRSlGgVTUAGaBZHQJWtX67/XGx1fZQoaAZoCWgPQwikiAyreE5awJSGlFKUaBVLQ2gWR0CVrUMSK3uvdX2UKGgGaAloD0MIglX18juNVkCUhpRSlGgVTUAGaBZHQJWzvUjLSu11fZQoaAZoCWgPQwia0CSxpLRJQJSGlFKUaBVNQAZoFkdAlbWTlDF6zHV9lChoBmgJaA9DCPS/XIsW91rAlIaUUpRoFUs2aBZHQJW3J50KZ2J1fZQoaAZoCWgPQwjy0k1iEMpXQJSGlFKUaBVNQAZoFkdAlbxy83++/XV9lChoBmgJaA9DCLRYiuQr1FdAlIaUUpRoFU1ABmgWR0CVvOjSXt0FdX2UKGgGaAloD0MIkKLO3ENmXECUhpRSlGgVTUAGaBZHQJW+JUlzEJl1fZQoaAZoCWgPQwjpYtNKIWlVQJSGlFKUaBVNQAZoFkdAlb6PYvnKXHVlLg=="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
+ "_n_updates": 310,
84
+ "n_steps": 2048,
85
  "gamma": 0.999,
86
+ "gae_lambda": 0.95,
87
+ "ent_coef": 0.001,
88
  "vf_coef": 0.5,
89
  "max_grad_norm": 0.5,
90
  "batch_size": 64,
91
+ "n_epochs": 10,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo_walker/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:142cc95159fa3b7358b67c85afe54f29efedea9ee2872613509642bb64b07e33
3
  size 105008
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a169921e81ea08e7d0dbece14c022c808f44c628da2fa8fc92ed3e59f072aab7
3
  size 105008
ppo_walker/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce6afde5d7429b609876e2235f21cb1ec74f21ed92c4dbf60e00dd2939aabfe2
3
  size 51710
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe160d9f3b71686082a3e00c544f38fc7d52f71888cd9feeb1b8fef2ded84df
3
  size 51710
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 248.41504367261695, "std_reward": 81.9165153388305, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T06:24:20.684609"}
 
1
+ {"mean_reward": 105.66298329838783, "std_reward": 93.67651232104464, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T06:55:59.220733"}