Muennighoff commited on
Commit
b52a3bc
1 Parent(s): b220bd1
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +24 -0
  2. 8b7178b13b/3583606.err +0 -0
  3. 8b7178b13b/3583606.out +0 -0
  4. 8b7178b13b/latest +1 -0
  5. 8b7178b13b/sbatch_8b7178b13b.sh +165 -0
  6. 8b7178b13b/sbatch_8b7178b13bfast.sh +165 -0
  7. 8b7178b13b/sbatch_8b7178b13bval.sh +172 -0
  8. 8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685008153.nid006481.68881.0 +3 -0
  9. 8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685008747.nid006481.73671.0 +3 -0
  10. 8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685011041.nid006582.81892.0 +3 -0
  11. 8b7178b25b/tensorboard_8b7178b25bval/events.out.tfevents.1684844937.nid006831.41907.0 +3 -0
  12. 8b7178b25b/tensorboard_8b7178b25bval/events.out.tfevents.1684845162.nid006103.125466.0 +3 -0
  13. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
  14. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
  15. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
  16. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
  17. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
  18. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
  19. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
  20. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
  21. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_2.json +1 -0
  22. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_3.json +1 -0
  23. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_4.json +1 -0
  24. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_5.json +1 -0
  25. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_0.json +1 -0
  26. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_1.json +1 -0
  27. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_2.json +1 -0
  28. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_3.json +1 -0
  29. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_4.json +1 -0
  30. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_5.json +1 -0
  31. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_0.json +1 -0
  32. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_1.json +1 -0
  33. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_2.json +1 -0
  34. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_3.json +1 -0
  35. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_4.json +1 -0
  36. 8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_5.json +1 -0
  37. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_0.jsonl +3 -0
  38. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_1.jsonl +3 -0
  39. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_2.jsonl +3 -0
  40. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_3.jsonl +3 -0
  41. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_4.jsonl +3 -0
  42. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_5.jsonl +3 -0
  43. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_0.jsonl +3 -0
  44. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_1.jsonl +3 -0
  45. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_2.jsonl +3 -0
  46. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_3.jsonl +3 -0
  47. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_4.jsonl +3 -0
  48. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_5.jsonl +3 -0
  49. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl +3 -0
  50. 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl +3 -0
.gitattributes CHANGED
@@ -225,3 +225,27 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
225
  8b7178b13b/evaluation/generation/examples.8b7178b13b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
226
  8b7178b13b/evaluation/generation/examples.8b7178b13b_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
227
  8b7178b13b/evaluation/generation/examples.8b7178b13b_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  8b7178b13b/evaluation/generation/examples.8b7178b13b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
226
  8b7178b13b/evaluation/generation/examples.8b7178b13b_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
227
  8b7178b13b/evaluation/generation/examples.8b7178b13b_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
228
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
229
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
230
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
231
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
232
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
233
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
234
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
235
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
236
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
237
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
238
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
239
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
240
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
241
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
242
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
243
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
244
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
245
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
246
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
247
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
248
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
249
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
250
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
251
+ 8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
8b7178b13b/3583606.err ADDED
The diff for this file is too large to render. See raw diff
 
8b7178b13b/3583606.out ADDED
The diff for this file is too large to render. See raw diff
 
8b7178b13b/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step84877
8b7178b13b/sbatch_8b7178b13b.sh ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --exclude=nid007542
3
+ #SBATCH --nodes=64
4
+ #SBATCH --ntasks-per-node=1
5
+ #SBATCH --cpus-per-task=40
6
+ #SBATCH --mem=256G
7
+ #SBATCH -p standard-g
8
+ #SBATCH -t 48:00:00
9
+ #SBATCH --gpus-per-node=mi250:8
10
+ #SBATCH --exclusive=user
11
+ #SBATCH --hint=nomultithread
12
+ #SBATCH --account=project_462000119
13
+ #SBATCH -o logs/%j.out
14
+ #SBATCH -e logs/%j.err
15
+
16
+ VARIANT=8b7178b13b
17
+
18
+ # if run without sbatch, invoke here
19
+ if [ -z $SLURM_JOB_ID ]; then
20
+ mkdir -p logs
21
+ sbatch "$0"
22
+ exit
23
+ fi
24
+
25
+ set -euo pipefail
26
+
27
+ # symlink logs/latest.out and logs/latest.err
28
+ ln -f -s $SLURM_JOB_ID.out logs/latest.out
29
+ ln -f -s $SLURM_JOB_ID.err logs/latest.err
30
+
31
+ KILL_SWITCH_PATH=kill-switch-$VARIANT
32
+ CHECKPOINT_PATH=checkpoints_$VARIANT
33
+ TENSORBOARD_PATH=tensorboard_$VARIANT
34
+
35
+ # Data
36
+ VOCAB_FILE="gpt2/vocab.json"
37
+ MERGE_FILE="gpt2/merges.txt"
38
+ #DATA_PATH="/scratch/project_462000119/data/pile/megatron_data/meg-gpt2_pile_text_document"
39
+
40
+ TRAIN_DATA_PATH=train13b.txt
41
+ # "train: 1.0 0:1 /scratch/project_462000119/data/c4_subsampled/gpt2tok_c4_en_13B_text_document"
42
+ VALID_DATA_PATH=val.txt
43
+ # "validation: 1.0 0:1 /scratch/project_462000119/data/c4_validation/gpt2tok_c4validation_rerun_text_document"
44
+
45
+
46
+ PP_SIZE=2
47
+ TP_SIZE=2
48
+
49
+ MICRO_BATCH_SIZE=2
50
+ GRADIENT_ACCUMULATION_STEPS=1
51
+ WORLD_SIZE=$((SLURM_GPUS_ON_NODE*SLURM_JOB_NUM_NODES))
52
+ GLOBAL_BATCH_SIZE=$((MICRO_BATCH_SIZE*WORLD_SIZE*GRADIENT_ACCUMULATION_STEPS))
53
+
54
+ # Model parameters
55
+ source model_params.sh
56
+ MODEL_PARAM=("${PARAM_9293M[@]}")
57
+ NHIDDEN=${MODEL_PARAM[0]}
58
+ FFN_HIDDEN_SIZE=${MODEL_PARAM[1]}
59
+ KV_SIZE=${MODEL_PARAM[2]}
60
+ NHEADS=${MODEL_PARAM[3]}
61
+ NLAYERS=${MODEL_PARAM[4]}
62
+ SEQ_LEN=2048
63
+
64
+ echo "Model parameters: d_model $NHIDDEN ffw_size $FFN_HIDDEN_SIZE kv_size $KV_SIZE n_heads $NHEADS n_layers $NLAYERS"
65
+
66
+ SAVE_INTERVAL=5000
67
+
68
+ # Tokens: 178000000000
69
+ # -> Samples: 86914062
70
+ TRAIN_SAMPLES=86_914_062
71
+
72
+ OPTIMIZER_ARGS=" \
73
+ --optimizer adam \
74
+ --adam-beta1 0.9 \
75
+ --adam-beta2 0.999 \
76
+ --adam-eps 1e-8 \
77
+ --lr 2e-4 \
78
+ --min-lr 2e-5 \
79
+ --lr-decay-style cosine \
80
+ --lr-decay-samples $TRAIN_SAMPLES \
81
+ --lr-warmup-samples 869_140 \
82
+ --clip-grad 1.0 \
83
+ --weight-decay 1e-1 \
84
+ "
85
+
86
+ GPT_ARGS=" \
87
+ --num-layers $NLAYERS \
88
+ --hidden-size $NHIDDEN \
89
+ --num-attention-heads $NHEADS \
90
+ --kv-channels $KV_SIZE \
91
+ --ffn-hidden-size $FFN_HIDDEN_SIZE \
92
+ --seq-length $SEQ_LEN \
93
+ --max-position-embeddings $SEQ_LEN \
94
+ --micro-batch-size $MICRO_BATCH_SIZE \
95
+ --global-batch-size $GLOBAL_BATCH_SIZE \
96
+ --train-samples $TRAIN_SAMPLES \
97
+ --vocab-file $VOCAB_FILE \
98
+ --merge-file $MERGE_FILE \
99
+ --clip-grad 1.0 \
100
+ --kill-switch-path $KILL_SWITCH_PATH \
101
+ --bf16 \
102
+ $OPTIMIZER_ARGS \
103
+ "
104
+
105
+ OUTPUT_ARGS=" \
106
+ --log-interval 10 \
107
+ --save-interval $SAVE_INTERVAL \
108
+ --eval-interval 1000 \
109
+ --eval-iters 1 \
110
+ --tensorboard-dir $TENSORBOARD_PATH \
111
+ --tensorboard-queue-size 5 \
112
+ --log-timers-to-tensorboard \
113
+ --log-batch-size-to-tensorboard \
114
+ --log-validation-ppl-to-tensorboard \
115
+ "
116
+
117
+ ZERO_STAGE=0
118
+
119
+ mkdir -p ds_configs
120
+ DS_CONFIG_PATH="ds_configs/$SLURM_JOB_ID.json"
121
+
122
+ cat <<EOF > $DS_CONFIG_PATH
123
+ {
124
+ "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
125
+ "train_batch_size": $GLOBAL_BATCH_SIZE,
126
+ "gradient_clipping": 1.0,
127
+ "zero_optimization": {
128
+ "stage": $ZERO_STAGE
129
+ },
130
+ "bf16": {
131
+ "enabled": true
132
+ },
133
+ "steps_per_print": 2000,
134
+ "wall_clock_breakdown": false
135
+ }
136
+ EOF
137
+
138
+ DEEPSPEED_ARGS=" \
139
+ --deepspeed \
140
+ --deepspeed_config $DS_CONFIG_PATH \
141
+ --zero-stage $ZERO_STAGE \
142
+ "
143
+
144
+ CMD=" \
145
+ Megatron-DeepSpeed/pretrain_gpt.py \
146
+ --tensor-model-parallel-size $TP_SIZE \
147
+ --pipeline-model-parallel-size $PP_SIZE \
148
+ $GPT_ARGS \
149
+ $OUTPUT_ARGS \
150
+ --save $CHECKPOINT_PATH \
151
+ --load $CHECKPOINT_PATH \
152
+ --train-weighted-split-paths-path $TRAIN_DATA_PATH \
153
+ --valid-weighted-split-paths-path $VALID_DATA_PATH \
154
+ --data-impl mmap \
155
+ $DEEPSPEED_ARGS \
156
+ "
157
+
158
+ echo $CMD
159
+
160
+ echo "START $SLURM_JOBID: $(date)"
161
+
162
+ # bash launch_srun.sh $CMD
163
+ srun --label launch.sh $CMD
164
+
165
+ echo "END $SLURM_JOBID: $(date)"
8b7178b13b/sbatch_8b7178b13bfast.sh ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --exclude=nid007542
3
+ #SBATCH --nodes=32
4
+ #SBATCH --ntasks-per-node=1
5
+ #SBATCH --cpus-per-task=40
6
+ #SBATCH --mem=256G
7
+ #SBATCH -p standard-g
8
+ #SBATCH -t 48:00:00
9
+ #SBATCH --gpus-per-node=mi250:8
10
+ #SBATCH --exclusive=user
11
+ #SBATCH --hint=nomultithread
12
+ #SBATCH --account=project_462000119
13
+ #SBATCH -o logs/%j.out
14
+ #SBATCH -e logs/%j.err
15
+
16
+ VARIANT=8b7178b13bfast
17
+
18
+ # if run without sbatch, invoke here
19
+ if [ -z $SLURM_JOB_ID ]; then
20
+ mkdir -p logs
21
+ sbatch "$0"
22
+ exit
23
+ fi
24
+
25
+ set -euo pipefail
26
+
27
+ # symlink logs/latest.out and logs/latest.err
28
+ ln -f -s $SLURM_JOB_ID.out logs/latest.out
29
+ ln -f -s $SLURM_JOB_ID.err logs/latest.err
30
+
31
+ KILL_SWITCH_PATH=kill-switch-$VARIANT
32
+ CHECKPOINT_PATH=checkpoints_$VARIANT
33
+ TENSORBOARD_PATH=tensorboard_$VARIANT
34
+
35
+ # Data
36
+ VOCAB_FILE="gpt2/vocab.json"
37
+ MERGE_FILE="gpt2/merges.txt"
38
+ #DATA_PATH="/scratch/project_462000119/data/pile/megatron_data/meg-gpt2_pile_text_document"
39
+
40
+ TRAIN_DATA_PATH=train13b.txt
41
+ # "train: 1.0 0:1 /scratch/project_462000119/data/c4_subsampled/gpt2tok_c4_en_13B_text_document"
42
+ VALID_DATA_PATH=val.txt
43
+ # "validation: 1.0 0:1 /scratch/project_462000119/data/c4_validation/gpt2tok_c4validation_rerun_text_document"
44
+
45
+
46
+ PP_SIZE=4
47
+ TP_SIZE=4
48
+
49
+ MICRO_BATCH_SIZE=1
50
+ GRADIENT_ACCUMULATION_STEPS=4
51
+ WORLD_SIZE=$((SLURM_GPUS_ON_NODE*SLURM_JOB_NUM_NODES))
52
+ GLOBAL_BATCH_SIZE=$((MICRO_BATCH_SIZE*WORLD_SIZE*GRADIENT_ACCUMULATION_STEPS))
53
+
54
+ # Model parameters
55
+ source model_params.sh
56
+ MODEL_PARAM=("${PARAM_9293M[@]}")
57
+ NHIDDEN=${MODEL_PARAM[0]}
58
+ FFN_HIDDEN_SIZE=${MODEL_PARAM[1]}
59
+ KV_SIZE=${MODEL_PARAM[2]}
60
+ NHEADS=${MODEL_PARAM[3]}
61
+ NLAYERS=${MODEL_PARAM[4]}
62
+ SEQ_LEN=2048
63
+
64
+ echo "Model parameters: d_model $NHIDDEN ffw_size $FFN_HIDDEN_SIZE kv_size $KV_SIZE n_heads $NHEADS n_layers $NLAYERS"
65
+
66
+ SAVE_INTERVAL=5000
67
+
68
+ # Tokens: 178000000000
69
+ # -> Samples: 86914062
70
+ TRAIN_SAMPLES=86_914_062
71
+
72
+ OPTIMIZER_ARGS=" \
73
+ --optimizer adam \
74
+ --adam-beta1 0.9 \
75
+ --adam-beta2 0.999 \
76
+ --adam-eps 1e-8 \
77
+ --lr 2e-4 \
78
+ --min-lr 2e-5 \
79
+ --lr-decay-style cosine \
80
+ --lr-decay-samples $TRAIN_SAMPLES \
81
+ --lr-warmup-samples 869_140 \
82
+ --clip-grad 1.0 \
83
+ --weight-decay 1e-1 \
84
+ "
85
+
86
+ GPT_ARGS=" \
87
+ --num-layers $NLAYERS \
88
+ --hidden-size $NHIDDEN \
89
+ --num-attention-heads $NHEADS \
90
+ --kv-channels $KV_SIZE \
91
+ --ffn-hidden-size $FFN_HIDDEN_SIZE \
92
+ --seq-length $SEQ_LEN \
93
+ --max-position-embeddings $SEQ_LEN \
94
+ --micro-batch-size $MICRO_BATCH_SIZE \
95
+ --global-batch-size $GLOBAL_BATCH_SIZE \
96
+ --train-samples $TRAIN_SAMPLES \
97
+ --vocab-file $VOCAB_FILE \
98
+ --merge-file $MERGE_FILE \
99
+ --clip-grad 1.0 \
100
+ --kill-switch-path $KILL_SWITCH_PATH \
101
+ --bf16 \
102
+ $OPTIMIZER_ARGS \
103
+ "
104
+
105
+ OUTPUT_ARGS=" \
106
+ --log-interval 10 \
107
+ --save-interval $SAVE_INTERVAL \
108
+ --eval-interval 1000 \
109
+ --eval-iters 1 \
110
+ --tensorboard-dir $TENSORBOARD_PATH \
111
+ --tensorboard-queue-size 5 \
112
+ --log-timers-to-tensorboard \
113
+ --log-batch-size-to-tensorboard \
114
+ --log-validation-ppl-to-tensorboard \
115
+ "
116
+
117
+ ZERO_STAGE=0
118
+
119
+ mkdir -p ds_configs
120
+ DS_CONFIG_PATH="ds_configs/$SLURM_JOB_ID.json"
121
+
122
+ cat <<EOF > $DS_CONFIG_PATH
123
+ {
124
+ "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
125
+ "train_batch_size": $GLOBAL_BATCH_SIZE,
126
+ "gradient_clipping": 1.0,
127
+ "zero_optimization": {
128
+ "stage": $ZERO_STAGE
129
+ },
130
+ "bf16": {
131
+ "enabled": true
132
+ },
133
+ "steps_per_print": 2000,
134
+ "wall_clock_breakdown": false
135
+ }
136
+ EOF
137
+
138
+ DEEPSPEED_ARGS=" \
139
+ --deepspeed \
140
+ --deepspeed_config $DS_CONFIG_PATH \
141
+ --zero-stage $ZERO_STAGE \
142
+ "
143
+
144
+ CMD=" \
145
+ Megatron-DeepSpeed/pretrain_gpt.py \
146
+ --tensor-model-parallel-size $TP_SIZE \
147
+ --pipeline-model-parallel-size $PP_SIZE \
148
+ $GPT_ARGS \
149
+ $OUTPUT_ARGS \
150
+ --save $CHECKPOINT_PATH \
151
+ --load $CHECKPOINT_PATH \
152
+ --train-weighted-split-paths-path $TRAIN_DATA_PATH \
153
+ --valid-weighted-split-paths-path $VALID_DATA_PATH \
154
+ --data-impl mmap \
155
+ $DEEPSPEED_ARGS \
156
+ "
157
+
158
+ echo $CMD
159
+
160
+ echo "START $SLURM_JOBID: $(date)"
161
+
162
+ # bash launch_srun.sh $CMD
163
+ srun --label launch.sh $CMD
164
+
165
+ echo "END $SLURM_JOBID: $(date)"
8b7178b13b/sbatch_8b7178b13bval.sh ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --exclude=nid007542
3
+ #SBATCH --nodes=32
4
+ #SBATCH --ntasks-per-node=1
5
+ #SBATCH --cpus-per-task=40
6
+ #SBATCH --mem=256G
7
+ #SBATCH -p standard-g
8
+ #SBATCH -t 48:00:00
9
+ #SBATCH --gpus-per-node=mi250:8
10
+ #SBATCH --exclusive=user
11
+ #SBATCH --hint=nomultithread
12
+ #SBATCH --account=project_462000119
13
+ #SBATCH -o logs/%j.out
14
+ #SBATCH -e logs/%j.err
15
+
16
+ VARIANT=8b7178b13bval
17
+ VARIANT_CKPT=lm1-8b7-178b-c4-repetitions/8b7178b13b
18
+
19
+ # if run without sbatch, invoke here
20
+ if [ -z $SLURM_JOB_ID ]; then
21
+ mkdir -p logs
22
+ sbatch "$0"
23
+ exit
24
+ fi
25
+
26
+ set -euo pipefail
27
+
28
+ # symlink logs/latest.out and logs/latest.err
29
+ ln -f -s $SLURM_JOB_ID.out logs/latest.out
30
+ ln -f -s $SLURM_JOB_ID.err logs/latest.err
31
+
32
+ KILL_SWITCH_PATH=kill-switch-$VARIANT
33
+ CHECKPOINT_PATH=$VARIANT_CKPT
34
+ TENSORBOARD_PATH=tensorboard_$VARIANT
35
+
36
+ # Data
37
+ VOCAB_FILE="gpt2/vocab.json"
38
+ MERGE_FILE="gpt2/merges.txt"
39
+ #DATA_PATH="/scratch/project_462000119/data/pile/megatron_data/meg-gpt2_pile_text_document"
40
+
41
+ TRAIN_DATA_PATH=train400m.txt
42
+ # "train: 1.0 0:1 /scratch/project_462000119/data/c4_subsampled/gpt2tok_c4_en_12B_text_document"
43
+ VALID_DATA_PATH=val.txt
44
+ # "validation: 1.0 0:1 /scratch/project_462000119/data/c4_validation/gpt2tok_c4validation_rerun_text_document"
45
+
46
+ PP_SIZE=4
47
+ TP_SIZE=4
48
+
49
+ MICRO_BATCH_SIZE=1
50
+ GRADIENT_ACCUMULATION_STEPS=2
51
+ WORLD_SIZE=$((SLURM_GPUS_ON_NODE*SLURM_JOB_NUM_NODES))
52
+ GLOBAL_BATCH_SIZE=$((MICRO_BATCH_SIZE*WORLD_SIZE*GRADIENT_ACCUMULATION_STEPS))
53
+
54
+ # Model parameters
55
+ source model_params.sh
56
+ MODEL_PARAM=("${PARAM_9293M[@]}")
57
+ NHIDDEN=${MODEL_PARAM[0]}
58
+ FFN_HIDDEN_SIZE=${MODEL_PARAM[1]}
59
+ KV_SIZE=${MODEL_PARAM[2]}
60
+ NHEADS=${MODEL_PARAM[3]}
61
+ NLAYERS=${MODEL_PARAM[4]}
62
+ SEQ_LEN=2048
63
+
64
+ echo "Model parameters: d_model $NHIDDEN ffw_size $FFN_HIDDEN_SIZE kv_size $KV_SIZE n_heads $NHEADS n_layers $NLAYERS"
65
+
66
+ SAVE_INTERVAL=5000
67
+
68
+ # Tokens: 11522010000
69
+ # -> Samples: 5625981
70
+ TRAIN_SAMPLES=1
71
+
72
+ OPTIMIZER_ARGS=" \
73
+ --optimizer adam \
74
+ --adam-beta1 0.9 \
75
+ --adam-beta2 0.999 \
76
+ --adam-eps 1e-8 \
77
+ --lr 2e-4 \
78
+ --min-lr 2e-5 \
79
+ --lr-decay-style cosine \
80
+ --lr-decay-samples $TRAIN_SAMPLES \
81
+ --lr-warmup-samples 0 \
82
+ --clip-grad 1.0 \
83
+ --weight-decay 1e-1 \
84
+ --override-lr-scheduler \
85
+ --reset-progress \
86
+ --no-load-optim \
87
+ "
88
+
89
+ GPT_ARGS=" \
90
+ --num-layers $NLAYERS \
91
+ --hidden-size $NHIDDEN \
92
+ --num-attention-heads $NHEADS \
93
+ --kv-channels $KV_SIZE \
94
+ --ffn-hidden-size $FFN_HIDDEN_SIZE \
95
+ --seq-length $SEQ_LEN \
96
+ --max-position-embeddings $SEQ_LEN \
97
+ --micro-batch-size $MICRO_BATCH_SIZE \
98
+ --global-batch-size $GLOBAL_BATCH_SIZE \
99
+ --train-samples $TRAIN_SAMPLES \
100
+ --vocab-file $VOCAB_FILE \
101
+ --merge-file $MERGE_FILE \
102
+ --clip-grad 1.0 \
103
+ --kill-switch-path $KILL_SWITCH_PATH \
104
+ --bf16 \
105
+ $OPTIMIZER_ARGS \
106
+ "
107
+
108
+ OUTPUT_ARGS=" \
109
+ --log-interval 10 \
110
+ --save-interval $SAVE_INTERVAL \
111
+ --eval-interval 1 \
112
+ --eval-iters 100 \
113
+ --eval-only true \
114
+ --tensorboard-dir $TENSORBOARD_PATH \
115
+ --tensorboard-queue-size 5 \
116
+ --log-timers-to-tensorboard \
117
+ --log-batch-size-to-tensorboard \
118
+ --log-validation-ppl-to-tensorboard \
119
+ "
120
+
121
+ ZERO_STAGE=0
122
+
123
+ mkdir -p ds_configs
124
+ DS_CONFIG_PATH="ds_configs/$SLURM_JOB_ID.json"
125
+
126
+ cat <<EOF > $DS_CONFIG_PATH
127
+ {
128
+ "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
129
+ "train_batch_size": $GLOBAL_BATCH_SIZE,
130
+ "gradient_clipping": 1.0,
131
+ "zero_optimization": {
132
+ "stage": $ZERO_STAGE
133
+ },
134
+ "bf16": {
135
+ "enabled": true
136
+ },
137
+ "steps_per_print": 2000,
138
+ "wall_clock_breakdown": false
139
+ }
140
+ EOF
141
+
142
+ DEEPSPEED_ARGS=" \
143
+ --deepspeed \
144
+ --deepspeed_config $DS_CONFIG_PATH \
145
+ --zero-stage $ZERO_STAGE \
146
+ "
147
+
148
+ CMD=" \
149
+ Megatron-DeepSpeed/pretrain_gpt.py \
150
+ --tensor-model-parallel-size $TP_SIZE \
151
+ --pipeline-model-parallel-size $PP_SIZE \
152
+ $GPT_ARGS \
153
+ $OUTPUT_ARGS \
154
+ --save $CHECKPOINT_PATH \
155
+ --load $CHECKPOINT_PATH \
156
+ --train-weighted-split-paths-path $TRAIN_DATA_PATH \
157
+ --valid-weighted-split-paths-path $VALID_DATA_PATH \
158
+ --data-impl mmap \
159
+ --num-workers 0 \
160
+ --valid-num-workers 0 \
161
+ $DEEPSPEED_ARGS \
162
+ "
163
+
164
+ echo $CMD
165
+
166
+ echo "START $SLURM_JOBID: $(date)"
167
+
168
+ # bash launch_srun.sh $CMD
169
+ srun --label launch.sh $CMD
170
+
171
+ echo "END $SLURM_JOBID: $(date)"
172
+
8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685008153.nid006481.68881.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b597ce1c7bf44f6b1e6abb132b4a20eca28b1c7459687da55aac2ecdf4a06193
3
+ size 980
8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685008747.nid006481.73671.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e28310706c342ee14540da74e2ed0788fb4a8c0177e8b3e87431348ad70cc1e7
3
+ size 980
8b7178b13b/tensorboard_8b7178b13bval/events.out.tfevents.1685011041.nid006582.81892.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b4cb0150da9a66d1bdc510ffecd20f0bf5ebfb9055b64d8900c0d51d818cb2f
3
+ size 980
8b7178b25b/tensorboard_8b7178b25bval/events.out.tfevents.1684844937.nid006831.41907.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc72841a0583f777855c5f12daf01d73fc680f926e1292248bbece4b38d1d2c9
3
+ size 40
8b7178b25b/tensorboard_8b7178b25bval/events.out.tfevents.1684845162.nid006103.125466.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd109158818480397093590bad4c58a37888c2b0fd0a5b4e4ccbd4f83ab3509a
3
+ size 40
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.4274462846584994, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.026506045585829644}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.0743940764798566, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0014865309649260369}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.32181178468311483, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0046779793640138664}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11401591584123742, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0020018749467427548}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.035398271042759596, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0009285365780968767}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.15703798625688678, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0033071200278070876}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05433244012190525, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012833100172831976}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07120802247039631, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001362906540968755}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.31125592253868395, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004548153090547622}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10946929754745122, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018607174533106234}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07100637180754554, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001398755345483045}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3067417251277733, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004374950039871412}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10881188996025698, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0018835358686024326}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.5086086062549235, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.024148152161397957}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.07420670646576108, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0012994585087623457}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3699833502592873, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005221535560959868}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11613651882382699, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017869903586088247}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03528298594442465, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008131219269542471}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.18919504627943293, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003948470106675628}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05556040217298211, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011573526331625286}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07064592165677544, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011911523984872805}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3529817507096153, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00491517289541728}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.11069330166344538, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016501808624972724}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07063890112491973, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0012189437083937394}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.35151452415262047, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004837998006757547}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.11048988644232176, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001670545364215763}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.6056899396941058, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.031095911436243143}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.07171720323593823, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0013407577731600893}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3940444073904271, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005453929450001824}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11269434916911006, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0016709087363002723}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03342565708524102, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007679332484666479}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.20366528828334413, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004145286907818467}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05325348987984883, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010824823620329564}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.06654587012077771, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0012126902994658729}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3626163032278441, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004808677935098044}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10449422734114891, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014912988107590758}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.06809528741035778, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0012705443708076406}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3717881435944756, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.005017031823311842}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.1068591227441311, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0015708609058507584}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.7043691445234566, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.033436352647492236}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.06945197089001147, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0011528009544658436}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.40339819978438163, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005565480395978604}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11118267231139893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0016217396109271171}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03230783770657853, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007067527472951313}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.20764571809595184, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004196897185127135}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05211591902402141, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010331141960554706}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.0633620924773605, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0010232470500386361}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3638284378001932, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004793212255287554}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10117012026750102, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014209168284038964}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.06592327408520764, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0010958929866110073}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.37984454029428794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.005122585721030877}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.1053138951283582, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001529640334300114}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.7237940725363642, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05068347700106321}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.06842641677261545, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0011165170819324747}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.406375539617853, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00550424978526618}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.10982478834712758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0015663207694755273}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.031843816337460154, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006802306529242348}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.2101465380791208, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004148287013449519}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05155868190087433, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009911919774912529}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.06196757937456414, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0009925820821838872}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.36309144001642407, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004660726913536042}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.09912881209100917, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001366723974954788}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.06489771066521006, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0010636680077013658}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3825474992320362, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.005083374729929655}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10396329790700495, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0014800754096392262}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.8235132351061684, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.03673652426206423}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.06807661053530396, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0010608834381468243}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.41555132879030265, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005712806441867834}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11000005624917578, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001511602784285709}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03190049650831127, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006496066520260159}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.21868118098088812, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004351358375129378}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05209703492451165, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.000966760303297213}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.061096978042372, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0009419140672594094}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3679922650615108, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004831134262904494}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.09833778576062344, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013130705666902862}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.06407881465692666, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0010057526623759078}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.38744747681119496, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00519938044209454}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10329798028758783, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0014185087292018597}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.141621308728508, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001852197455721959}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.2487835153814821, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002883968433439267}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.16789045871402775, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001899331826630772}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.028274308481376006, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007638689773747983}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.05312688704536566, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001543560570845198}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.033980155567562176, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008772611553649017}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.10723271379275104, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0012832871011880624}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.19569867076577613, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002336256705578366}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.12866222215650755, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013553903517883699}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.1310312538372522, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0016949440714634507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2313303827432569, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026938189641655444}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.15551623162738257, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0017397466278372554}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 1.607743073760489, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0505448817544192}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.20162081804133491, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0023006404028398596}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.3302113914143275, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029253291213495436}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.22971432102282577, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002024992641113895}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.05353641148052063, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0011596978277920967}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.0901699660110981, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0018295391165180175}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.06075703698527234, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011280888351149878}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.14458374147535075, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001635799675433344}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.24465580855285374, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024107233856668618}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.16594057607108714, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014257612958005858}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.18996108622649027, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002170230659407399}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.31222699454801467, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027814459127952855}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.21655317006571786, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001899322620870555}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.247891638911873, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.08372328781084526}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.22464896032753767, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00267471320719044}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.3334397692148636, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029039999435442228}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.24066179288126918, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0020250503611946593}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.06367029131472855, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0013893020454497178}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.09620481258465774, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0019131250126952382}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.0672929256474048, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011920824100654986}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.16413395555652943, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0019891543999868556}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.250622872215609, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024435750314427333}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.17657109086645734, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001468075623241685}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.21176073950316202, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0025334766675070507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.31521561952071925, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027809099107783215}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.2268588669501038, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019039387353264705}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.7546658955082104, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05106004200886398}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.19547574181004312, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003050688739798117}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.27599613346113083, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003547296490903856}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.1999944588590951, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0024431054075354647}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.05556100650606968, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015316523441232619}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.07900668123150884, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001936538574501469}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.055502076840201975, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012165658097950253}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.14441472671608785, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0023810920879014986}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.20695094754990062, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0028534088606798126}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.14698550688574344, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018099945049349275}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.18528466682755065, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002913994201194578}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2616826664782059, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0033798208398086076}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.1893838880235665, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023154515872413177}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.693352277729935, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09530601369536958}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.063039334135716, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00237217321150148}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.09017328403874066, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003175334226857727}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.06295072251821578, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021227903441220584}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.01726942511454547, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001004417819364943}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.026632929529636855, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0014520619320699361}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.01740325470887385, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008413142438273321}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.048037538244205064, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0018761060154017623}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.06863572497099125, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002484143953625902}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.04720899567270062, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015949102808424699}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.059620692839723696, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0022577542164374776}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.08531399766560527, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00302563434718094}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.05941144209472935, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020085067689640797}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 0.7011252343751181, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.054776720182795745}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.011023013045319767, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0011239191554005244}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.01576861876664237, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.001514110135289748}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.010948945347352195, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0010303712513734353}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.0030642982687765735, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00043761754647970557}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.0048436181769985496, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0007069513940476318}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.003081959728364898, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0003958924398148921}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.008303485879920013, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.000873077615735369}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.011933114229936235, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0011773390443061134}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.008113230483687816, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.000757965684491531}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.010476549059782741, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0010807405840856448}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.015045032229734936, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0014570036926186405}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.010379882751860353, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0009814470061507048}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 6.442668131454499e-07, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 1.6780002001919048e-06}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 1.2617835680167517, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10635778923661202}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.11745138823891885, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0015011277238236715}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.22985234642531047, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002121425510390003}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.14934980508808265, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0016043096357849695}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.022449491334163164, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007873950105451982}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.041963515173589365, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0013675959887181714}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.027899167959252163, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009510765177625647}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.1035383301816468, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0010714123610581939}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.21015803872628752, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0017418540261349958}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.13395735123983762, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00119951498857243}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.10678429826736537, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0013783155650794233}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.20841519216554769, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0019094622189363957}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.13550871061320946, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001452232590175344}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 8.028465709884875, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10414333335862284}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.33860487694185304, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002059676862058819}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5051950548626472, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00294388539222501}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.39099089747429966, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0019423224150055892}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.14891190026236875, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0014722962919980933}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2273413357531751, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002240835952327236}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.17313651053671014, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0015844557666629471}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.24778622071466067, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001542767658539951}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3751611447552265, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024874116332485865}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.2875433639233825, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015221333146636332}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.2789653525284207, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001973666047446342}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4143210047809657, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002765128231116627}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.3214385233916606, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001926585809990621}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 10.118135078197039, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09810052501619766}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.37391944585631076, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019127935246138258}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5276735152486758, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028083305880520666}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.42448550544175645, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001825472888691242}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.17745705101705952, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015612598687988076}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.25548983218564925, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023268496099242975}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.20250984831545202, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0016721804731251128}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.2708392675295398, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015293358001324147}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3866756916075708, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024884834616842755}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3085528535031243, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015558243556986532}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.31184277536230626, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0018957620411070345}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.43875485442059636, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002710851391374029}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.35353842822798887, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001886743880999753}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 10.189563951094414, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09427499367940084}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.36817190833860697, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019656678844549645}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5363504766997446, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0027352574830906383}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.42389949583381237, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018605488068051588}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.17677690202821514, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015500577175042321}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2630023508064778, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023343418511276868}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.20474913748031123, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0016798602044551796}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.26924224328922214, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0014968175338731645}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3991179057569062, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002484404009518406}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3118160024380036, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015347599766876738}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.30800886875805217, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0019097659829946047}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4483937574374488, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026777107579305293}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.3544946381824597, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019027110628313127}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 10.087905126304989, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.12083096625574397}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.363770828222443, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0020036630555845163}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5387177659214019, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002646963846141895}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.4212315759756044, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018415320213085158}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.17597560551882171, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001571481262205388}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2657691623220242, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002333604850349637}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.20471927374375903, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0016719159604382972}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.26877802100515913, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015442331987074057}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.4052364760809525, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024774430086498}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3130529200481379, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015386652999892186}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.3043335333487051, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0019221279858750424}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.45057659617077206, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026276807170486868}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.3523313968378458, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001878784755073219}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 9.819773449865215, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.11548211534367327}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.35770393515726967, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0020171246319611895}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.539688571960094, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002611808763994368}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.4171512639820159, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018457472467404608}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.1728779412674664, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001552564907957209}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.26604296450461634, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002299997324816336}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.20263412608550646, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0016590004976459545}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.2650100444015115, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015203204596296734}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.4087745798701937, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024798181425658206}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3113829743853015, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001519582979021018}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.3001431880229394, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0019447092940593606}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4521649916174878, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0025893467916896255}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.34979542583413165, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0018887263526221952}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.1640429927941635, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002015041956665472}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.39341008253163384, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004636047629579328}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.22742139033510708, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0026114290632041296}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.043275784885704716, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001336391186147405}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.10866533118072726, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003402923147178015}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.060906753315850805, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0018640421740763493}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.12259957209931875, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015710911079803718}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2958746933623946, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0037695130327974375}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.17023515816181556, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002061842004493983}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.12928277474166358, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0017231366356998507}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.31266179796436216, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004192600769757827}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.1796488354953124, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00228884690406039}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.660236171533595, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13058979906246349}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.13655953349875768, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019656757175551577}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.3351266289452704, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0045506786659058425}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.19173204586716094, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002639692576988235}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.030642922658876727, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001142930640307047}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.07840904303144859, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003007597927500564}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.043509124193048414, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0016166226125424621}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.10515008122500365, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0014878667949867396}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2603291047174206, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0036304258303670577}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1479712469429257, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002021808544636796}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.10864088340556836, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0016392672849460208}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.26926885885160073, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004010439316574938}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15295586712265904, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022389650188625095}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.8314489114971673, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05409360756715158}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.14713632905683816, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0020215279085607075}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.3625697155906082, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004676136272316295}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20690402045254036, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0027232531224059726}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.03817870519938818, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0012523560434755418}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.09803539445968558, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003268351761516068}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.05427974421404337, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0017696178332732388}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.11527249431509622, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015525999339183435}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.28699007838315493, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003846678173723021}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.16250269839239403, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021208807462068965}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.11807937715144022, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0017041758270634855}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.2936525618807245, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004161272394841371}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.16643954154187726, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023327546790871127}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.3328395887156255, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10816864533274577}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.15050477129545162, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0021650717494144725}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.35833402440286477, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004875928275119348}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20790416673134823, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0027904145464295793}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.03967555502420575, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001257612569171145}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.0995195510617509, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0032409089175577817}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.05578255582904122, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0017532403099110591}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.11465132801092887, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001666726965584784}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.27592762804713344, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004014306258609167}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1588561646225248, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00218993426182156}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.11933090671402025, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0018043535233345025}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.28657490925873824, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004297538545009866}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.1652197759476937, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002376223870136714}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.4415835212159744, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09205861798425756}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.04479833541552641, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0024920338028095244}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.09115873549013587, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0051576903382473185}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.05651233636898341, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0030905378199610973}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.010549200347804146, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008786327894641382}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.024034279053592206, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0020028495235980617}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.014022544687027934, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011421600358457382}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.03426844067651488, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0019596209525071014}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.06925411151199752, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003988959935482703}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.04286140894694921, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002370447391151435}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.036540645050964785, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0020678075006755215}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.07413354565538481, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004252794848785553}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.045863687869416005, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0025272572767658435}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.0886930800027617, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13685163756146332}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/agg.8b7178b25bopt_gem_xsum_article_DOC_summary_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.0027738518451789936, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0007772852422880741}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.004449774503151586, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0013000230402188415}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.0030531767218957887, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0008235812485186412}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.0004318387593770127, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002096018140886139}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.0006493854199619724, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0002769463291779765}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.000461932013569787, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00019747062019636368}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.0018680723098669894, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0005358076043197855}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.0029818697516115103, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0008929801630497813}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.00206141715660179, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0005827251790517291}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.002156304889205613, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0006383957765946712}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.003337441465976244, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0009699711366361862}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.002323102977881885, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0006354398848530671}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.170644306962683e-19, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 5.499005165072242e-15}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-c4-repetitions/8b7178b25bopt/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56297267d239aa3ae85dc064841b9cca5245e3de73573c9ae0960457eb9791a5
3
+ size 4118306
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90a5cc85ea64b71c5d231ad74de0f4845a348ee78c2d8e8fb1d7785f664a496f
3
+ size 5086123
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_2.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8314926e52648b082ba73d976fd1452e86ef5cf86bc265ce345514f782edec9c
3
+ size 6068364
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_3.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81acbde5d9aab82313450f9e9ea922a07ae1d69be7335f358fca8c2022642cc9
3
+ size 7009353
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_4.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e585664128a62caf515217bed81a082c1c531711317cfe73f637998cfae6a435
3
+ size 7928900
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-web_nlg_en_PALM_prompt_5.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a9e7306234e7e2f02c0b3bc0d7608e9adcb780980f15c155336656c1bc1fe99
3
+ size 8833847
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e18dd76311b0935a7ba672787f6956531f3b2dcded6f1ab4d27cc3c25ab2d9e9
3
+ size 7667394
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b75386aa311a8e4be57fcbc118a00232eaa1cd97175d38dbf0f586a3cd95b00
3
+ size 13300073
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_2.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:338a66c62b4f06b1ce998e885a68fb128041512fb2202e1d262989a6314e7c21
3
+ size 18870569
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_3.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d62b4accabd2089e91dae63aa312c8403b62a861aab9149a0bf049924fa410
3
+ size 24295083
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_4.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4a3047a2d5d29135e6cc65a86fb69549f7721343764f1fbb6afc2533ca81ca1
3
+ size 29456332
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_GEM-wiki_lingua_en_tldr_en_5.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d559f0e51104fe34348ef9430a55951d257c7274fe476af18dfcaa5fd727ffa
3
+ size 34798468
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a77a997fdebc9f76be3b8c9828dcf7ad3e8a297aeef2ef4bc6f56b71a5e3f9da
3
+ size 4459245
8b7178b25bopt/evaluation/generation/examples.8b7178b25bopt_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:394a4bc43e0737726bfb023c5f9dafcb3705350cff335f425d830104354af7b3
3
+ size 5362308