Muennighoff commited on
Commit
e989436
1 Parent(s): 9ec2efb
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +48 -0
  2. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
  3. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
  4. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
  5. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
  6. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
  7. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
  8. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
  9. 8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
  10. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_0.json +1 -0
  11. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_1.json +1 -0
  12. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_2.json +1 -0
  13. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_3.json +1 -0
  14. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_4.json +1 -0
  15. 8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_5.json +1 -0
  16. 8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_0.json +1 -0
  17. 8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_1.json +1 -0
  18. 8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_2.json +1 -0
  19. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.jsonl +3 -0
  20. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.jsonl +3 -0
  21. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.jsonl +3 -0
  22. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.jsonl +3 -0
  23. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.jsonl +3 -0
  24. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.jsonl +3 -0
  25. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.jsonl +3 -0
  26. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.jsonl +3 -0
  27. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_2.jsonl +0 -0
  28. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_3.jsonl +0 -0
  29. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_4.jsonl +0 -0
  30. 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_5.jsonl +0 -0
  31. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl +3 -0
  32. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl +3 -0
  33. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl +3 -0
  34. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl +3 -0
  35. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl +3 -0
  36. 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl +3 -0
  37. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_0.jsonl +3 -0
  38. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_1.jsonl +3 -0
  39. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_2.jsonl +3 -0
  40. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_3.jsonl +0 -0
  41. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_4.jsonl +0 -0
  42. 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_5.jsonl +0 -0
  43. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.json +133 -0
  44. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.json +133 -0
  45. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.json +133 -0
  46. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.json +133 -0
  47. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.json +133 -0
  48. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.json +133 -0
  49. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.json +133 -0
  50. 8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.json +133 -0
.gitattributes CHANGED
@@ -32,3 +32,51 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
36
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
37
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
38
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
39
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
40
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
41
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
42
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
43
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
44
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
45
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
46
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
47
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
48
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
49
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
50
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
51
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
52
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
53
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
54
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
55
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
56
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
57
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
58
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
59
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
60
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
61
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
62
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
63
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
64
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
65
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
66
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
67
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
68
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
69
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
70
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
71
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
72
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
73
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
74
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
75
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
76
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
77
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
78
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
79
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
80
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
81
+ 8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
82
+ 8b7178b88b/evaluation/generation/examples.8b7178b88b_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.4712440224858371, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.041795896662364315}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.08494278433659254, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002682014199464667}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3010315100774798, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005434382926718196}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11420475482093911, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022183305831393195}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03708415721222578, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015055606328312114}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.14224175280721357, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0032367826210838984}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.051776101353314175, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012810666933093713}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07986488274116094, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0025364066921602967}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.2851084703862567, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.005103727035204417}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10723944522759159, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002017538602140417}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.08031203138023377, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0025700547990470703}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2832049885841092, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00501983173550152}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10754705129811067, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002066923006506901}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.6352422858353469, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04386319262846487}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.14729082149250516, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004315116801617204}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.34501701041772753, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004883560454809294}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.17595828606649466, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0037103128590180736}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.0749912603946425, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0029697645981284103}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.17507177387031794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0035680879509635034}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.08797235452625987, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002563800160615811}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.13087012462145003, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0037359089786958557}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3214469196295103, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004518231473535444}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1587241385605771, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0031813191221144485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.13443162008077075, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0038480943977239573}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.32447309188867546, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0044995663315275155}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.16209364614512511, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003268839028418146}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.9195810919624675, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04315216107683015}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.19281853446958125, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005348179657635172}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3839239693259562, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004896794421772872}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.21485950562026987, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004330200790716057}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.1059225294754287, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0036916446521448806}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.20457409251843786, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0037775743582373947}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11382579286837109, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0029731216918058084}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.16888883147055286, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00457575327708451}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.35302151670878984, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004443535122018173}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1905777152487244, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0036266046372882984}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.17526191475368208, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004769580382692894}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.35984651407202956, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004507478564774203}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.1966781681343204, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0037869984327305512}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.0349566025343735, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.03887674612290353}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.20438835211537978, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005665805208271208}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.39198992418866246, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004947498335222262}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.2237082219543607, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004572034500678942}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.11365499071190853, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00397252439813096}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.2111302605559281, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003926393767113415}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.1207306381621409, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003262380279344123}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.17756713475764335, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004833439612735641}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3583014136638203, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004476979554028604}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.196789710556852, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0038281461566836554}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.18556820599751273, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00508629808674153}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3664900622762122, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004561176586485258}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.20416935580581227, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004021347054930177}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.1673998473534046, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09133948510400369}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.2125195111528658, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005730453983133926}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.40637639113635166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004933922377880338}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.23196338111553216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004558457306896048}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.11875092253811664, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0039714331213516595}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.22248575515884728, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004014145150661029}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.12559736589051002, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003188817274548042}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1843607825179914, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0048800492055134925}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.370665372766866, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004464677380992271}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.2038615706419507, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003812860468542949}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.19370515184964268, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005184788234116766}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3806829975264072, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004583640895651089}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.2125920854603434, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004058013873763605}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.194760741144373, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09038400286323779}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.22388107728965712, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0058375878448932725}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.41258053843820386, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004808891702805189}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.24067238350377898, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004627635578763758}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.12470779957706617, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004011608962377894}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.22396081182592556, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003932938864761309}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.12988590207293185, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003239297680717399}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.19195297464964095, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004914089701123312}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.37374160359881364, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00433847098671097}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.20930811896578502, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0038259333936250185}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.20275170487892208, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005253109590732199}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3844755575959121, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004448663215506157}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.21923266732565286, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004087600756703223}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.11259234653795358, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0032411862971363117}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.14340893843595093, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0034694907773717048}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.10762579083182928, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0025835076322910672}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.02582999428983234, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010000072112516562}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.03784241933814092, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001450453403192633}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.02778920003491775, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.000982242456017776}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.08841484558766141, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0027853934411114305}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.1114317644839379, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0027453844256091257}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.08192620888873649, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0019339948879164794}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.1068082984161991, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031424461382987463}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.13490305217744453, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0032803950524800847}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.10120163014874665, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002435237757238233}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.170472303270534, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09245843828343826}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.19504169763237164, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003161655570483573}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.2268980166797919, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00336143207911689}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.18153788588353004, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002424482153914544}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.049740220187040864, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001561722025312558}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.05782059703115125, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0016860297998920056}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.044909001327117046, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011943824375694858}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.14594590659077963, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002476347943750222}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.1691189101402509, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002588936970621776}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.1341843957584949, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017857657209747223}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.18281924229155466, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0029977938731759806}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.21164415433278383, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0031361900114708872}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.16951014920125493, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022640636265336893}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.020335174960559, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06787715772935045}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 2.235702101845383, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.14717774293969751}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.7622052797070503, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006647669795578922}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.1532954300944369, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0031267049368978316}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.18121867050334917, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018474922816842606}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.7122733552799622, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.007806658717987775}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.07189313722539607, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0017250469433453682}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.08752141617950068, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010542837911429734}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.7500255707124592, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.006889071529543362}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.13882842661597, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025055451424711027}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.1698326390033901, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014973431260616968}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.752191135927755, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00685154752320934}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.14346581040848494, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002891637286051436}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.17261995880897366, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016987141071618745}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 12.507959373818647, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.12774308491764494}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.5901037503482837, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0032159724501758416}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4453954075758376, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030647232677422412}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.48125855004986695, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0023747652067436864}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.2860806077756621, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027716337523015977}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.21297260057374331, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002224122053216537}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.23034576083422903, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0020975083120057516}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4308357021587011, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003009420690844223}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3212543906087175, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002480078078958591}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.34846752107389445, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021243881165946155}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.4830396285828985, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003213107569523447}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.3634977467417529, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002819214726631758}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.3931631455827191, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023981333184838593}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.158653678134238, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.11217626725691181}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6066145287034505, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003147539042422012}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.48239587619310037, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029532891322940407}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5131292320126455, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002253031761361406}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.3089787427206784, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0028203707876968153}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.24188957715036025, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002292974031208558}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2578530121604481, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0021628607938910917}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.44560511468454206, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002995038040318342}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.35193582043955735, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025196283655795136}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.37525966202827027, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021725307399361672}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5064590234844139, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003190583549175626}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4026845079975637, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002836627735824717}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4285131129511556, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024045780604980463}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.759812537730546, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.16130432495289687}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6077270325813979, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031150320109689183}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.49124527491366843, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029113142559981263}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5204784544081206, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002251275712244091}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.31332017254120853, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027772905192189512}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2502643652420692, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023315173133087275}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.26545692823299993, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0021835553197599713}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4459205694292829, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0029361567575171836}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3592970906286205, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025375120589350396}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3810216920994399, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002194042986121944}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5082193147554575, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003142597202698407}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.41160458845561226, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002840955053130549}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4357908055166842, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024150704709467426}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 16.134799256710256, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1070119918698532}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6054119860771526, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031401965578103136}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4946565816842518, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028364911596105765}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.523909375920506, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022880595790812155}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.3124961122227526, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002808954903697186}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.25220130152340275, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023493523906758557}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.26757332273287654, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0022434333099258102}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.44233843950127705, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0029306698549013154}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3607369273273119, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002523691933961996}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.382175935620986, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002236237383536334}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5057660051353207, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003153645376968123}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4139501510871044, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002788136076678763}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4381722454639816, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024443106668905357}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 16.107165763126492, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1725403495293288}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6037882438302521, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00307437348704947}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.49496382545882733, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0027753751046680057}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5240001141378704, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022053636458810423}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.31296117294303094, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027976539566726744}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.25262525126987617, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023072545439166217}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.26817812765923393, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002197626024453061}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.44434419215812615, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002949180064465491}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3625276939571968, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024933568400759844}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3843695820781079, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0022098458849370652}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5068534628215157, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031588710330076797}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.41448240798432473, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027203178472831524}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4393845856350276, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002395852175826684}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.1554932484923166, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002221691062513405}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.35841398237522276, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004880460975300627}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.2131475561803473, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002809398976147748}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.036146559262545196, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0012086761533876766}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.08868762877243597, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0030835154047321074}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.05062634534913608, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001690768330530915}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.11383026012975615, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001748646718497343}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2638855275835188, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0038587410761858755}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.15595658881556435, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002127497880378741}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.12373439304630478, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0019078089158618033}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.2868552037024372, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004272131408381669}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.16967238254142056, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00237624607133809}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.1587870129118882, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09029922216218629}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.17602273459783957, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0034912567740095035}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.2978672198691626, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004325712043489534}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20475174329785, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0030292857270426262}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.04044850363752258, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0019137570100629107}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.06884979773351274, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002724070824860895}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.046694043648379924, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001891957305961457}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.13694272638916472, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0028412360369673493}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2334897227634632, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003556590427451311}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1593397594005996, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0024118116760541847}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.137142234387202, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0029073893715640745}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.23357550407307784, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003728086289055363}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15946764140405875, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0025141424269190023}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.9813214649410344, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06605541875330423}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/agg.8b7178b44b_gem_xsum_article_DOC_summary_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.2229374260378376, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004280928411283304}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.28304069580526636, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003972947611177992}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.2303304665083427, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003468001334593542}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.057639208977718646, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002614759341604805}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.06850665995022794, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0026514610571335023}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.05750919277461529, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002337201303458201}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.17219483167439611, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003538412807763811}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.21973513766849492, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0033149507650464807}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.17795352717964225, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0028890194692426686}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.17313600638730706, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0035630889990072444}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.2218290481310322, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0034301100563963126}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.17909978174756772, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002921283919599673}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.568315279137756, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13888090668923836}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8339addbfc0b2ede94cb25dc11238a81aaa21283f2803bd36f6486b2d5e6404c
3
+ size 3866795
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6382e0a51d013e467a7cfbdeb8fbec4c6e8db7e6678bf0920293c65e978abfe
3
+ size 4691205
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fabd8518b73485027526b64535a66a8e0750aa0849fdbb065c2e98a6c67aa320
3
+ size 5521059
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b5dd6afcaa7477faf4a44fca98f6b7f79553046f8575c0f707d4e4c12229744
3
+ size 6425484
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:783b978aacceeb440353f7237c4e5c9ecc63ea0b9eb291bcc38dd19aeff2bb39
3
+ size 7316949
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d424024c7212898f66db28844f617a72480e72fb2379ca3a337c27f0c00e6031
3
+ size 8202195
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74405f30b53bd6d76c62783114bb60edb313d93fc34483bd2e72c589a9c62cb2
3
+ size 7250720
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:313b14011f3e26d22574a478f82fb992167a2d98a1a63b14cd53ebf3ceec101e
3
+ size 13040072
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_2.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_3.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_4.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_GEM-wiki_lingua_en_tldr_en_5.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e4d23880302237ccf33e401b7517581aa16962ca935ec633f0c47ea6bd5b8d
3
+ size 3787869
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1399558ecce70df4bf20714cbb51dcbea1044ce6fd2024ddde5261048397f651
3
+ size 4994557
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56ec148302a38265fe42b1ae6affc50e64b965006940315d1d4fcf0b859550c
3
+ size 6092875
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39ea06fcb170a3d6bb9812808bdccbb16c93ca0da1609e35d1f70fa0e931d067
3
+ size 7177725
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81034bd11be74be75f8958c567d13cdfd98a67af0630fde5212f0f71a3c3cb96
3
+ size 8258693
8b7178b44b/evaluation/generation/examples.8b7178b44b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d105c01293042b025be040e49eb923792bdd813c868adf51b2e135fa6916252a
3
+ size 9345579
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_0.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7873d0adacd52a5c6095631bae0a34012b3dcae266f57054b8befef8c688c84b
3
+ size 2806869
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_1.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0d9292cc62b21da242e84e535547c30b9161725d6c92c3a60631a06b0642093
3
+ size 5031838
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_2.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf53cc1d1b0b36b1400ad34fe1ab33d165a9b0183df5b603a5abe07b87ce3f3e
3
+ size 7247412
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_3.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_4.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/examples.8b7178b44b_gem_xsum_article_DOC_summary_5.jsonl ADDED
File without changes
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_0.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 0.4712440224858371,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.041795896662364315
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.08494278433659254,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.002682014199464667
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.3010315100774798,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.005434382926718196
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.11420475482093911,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.0022183305831393195
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.03708415721222578,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.0015055606328312114
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.14224175280721357,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.0032367826210838984
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.051776101353314175,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.0012810666933093713
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.07986488274116094,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.0025364066921602967
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.2851084703862567,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.005103727035204417
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.10723944522759159,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.002017538602140417
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.08031203138023377,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.0025700547990470703
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.2832049885841092,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.00501983173550152
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.10754705129811067,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.002066923006506901
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 0,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_1.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 0.6352422858353469,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.04386319262846487
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.14729082149250516,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.004315116801617204
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.34501701041772753,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.004883560454809294
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.17595828606649466,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.0037103128590180736
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.0749912603946425,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.0029697645981284103
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.17507177387031794,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.0035680879509635034
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.08797235452625987,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.002563800160615811
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.13087012462145003,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.0037359089786958557
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.3214469196295103,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.004518231473535444
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.1587241385605771,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.0031813191221144485
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.13443162008077075,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.0038480943977239573
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.32447309188867546,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.0044995663315275155
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.16209364614512511,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.003268839028418146
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 1,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_2.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 0.9195810919624675,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.04315216107683015
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.19281853446958125,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.005348179657635172
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.3839239693259562,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.004896794421772872
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.21485950562026987,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.004330200790716057
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.1059225294754287,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.0036916446521448806
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.20457409251843786,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.0037775743582373947
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.11382579286837109,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.0029731216918058084
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.16888883147055286,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.00457575327708451
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.35302151670878984,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.004443535122018173
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.1905777152487244,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.0036266046372882984
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.17526191475368208,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.004769580382692894
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.35984651407202956,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.004507478564774203
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.1966781681343204,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.0037869984327305512
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 2,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_3.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 1.0349566025343735,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.03887674612290353
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.20438835211537978,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.005665805208271208
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.39198992418866246,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.004947498335222262
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.2237082219543607,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.004572034500678942
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.11365499071190853,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.00397252439813096
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.2111302605559281,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.003926393767113415
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.1207306381621409,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.003262380279344123
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.17756713475764335,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.004833439612735641
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.3583014136638203,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.004476979554028604
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.196789710556852,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.0038281461566836554
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.18556820599751273,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.00508629808674153
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.3664900622762122,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.004561176586485258
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.20416935580581227,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.004021347054930177
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 3,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_4.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 1.1673998473534046,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.09133948510400369
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.2125195111528658,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.005730453983133926
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.40637639113635166,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.004933922377880338
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.23196338111553216,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.004558457306896048
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.11875092253811664,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.0039714331213516595
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.22248575515884728,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.004014145150661029
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.12559736589051002,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.003188817274548042
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.1843607825179914,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.0048800492055134925
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.370665372766866,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.004464677380992271
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.2038615706419507,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.003812860468542949
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.19370515184964268,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.005184788234116766
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.3806829975264072,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.004583640895651089
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.2125920854603434,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.004058013873763605
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 4,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-web_nlg_en_PALM_prompt_5.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/web_nlg_en",
5
+ "prompt_name": "PALM_prompt",
6
+ "bleu": 1.194760741144373,
7
+ "dataset_path": "GEM/web_nlg",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "bleu_stderr": 0.09038400286323779
11
+ },
12
+ {
13
+ "task_name": "GEM/web_nlg_en",
14
+ "prompt_name": "PALM_prompt",
15
+ "rouge1_precision": 0.22388107728965712,
16
+ "dataset_path": "GEM/web_nlg",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_precision_stderr": 0.0058375878448932725
20
+ },
21
+ {
22
+ "task_name": "GEM/web_nlg_en",
23
+ "prompt_name": "PALM_prompt",
24
+ "rouge1_recall": 0.41258053843820386,
25
+ "dataset_path": "GEM/web_nlg",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_recall_stderr": 0.004808891702805189
29
+ },
30
+ {
31
+ "task_name": "GEM/web_nlg_en",
32
+ "prompt_name": "PALM_prompt",
33
+ "rouge1_fmeasure": 0.24067238350377898,
34
+ "dataset_path": "GEM/web_nlg",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge1_fmeasure_stderr": 0.004627635578763758
38
+ },
39
+ {
40
+ "task_name": "GEM/web_nlg_en",
41
+ "prompt_name": "PALM_prompt",
42
+ "rouge2_precision": 0.12470779957706617,
43
+ "dataset_path": "GEM/web_nlg",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_precision_stderr": 0.004011608962377894
47
+ },
48
+ {
49
+ "task_name": "GEM/web_nlg_en",
50
+ "prompt_name": "PALM_prompt",
51
+ "rouge2_recall": 0.22396081182592556,
52
+ "dataset_path": "GEM/web_nlg",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_recall_stderr": 0.003932938864761309
56
+ },
57
+ {
58
+ "task_name": "GEM/web_nlg_en",
59
+ "prompt_name": "PALM_prompt",
60
+ "rouge2_fmeasure": 0.12988590207293185,
61
+ "dataset_path": "GEM/web_nlg",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rouge2_fmeasure_stderr": 0.003239297680717399
65
+ },
66
+ {
67
+ "task_name": "GEM/web_nlg_en",
68
+ "prompt_name": "PALM_prompt",
69
+ "rougeL_precision": 0.19195297464964095,
70
+ "dataset_path": "GEM/web_nlg",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_precision_stderr": 0.004914089701123312
74
+ },
75
+ {
76
+ "task_name": "GEM/web_nlg_en",
77
+ "prompt_name": "PALM_prompt",
78
+ "rougeL_recall": 0.37374160359881364,
79
+ "dataset_path": "GEM/web_nlg",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_recall_stderr": 0.00433847098671097
83
+ },
84
+ {
85
+ "task_name": "GEM/web_nlg_en",
86
+ "prompt_name": "PALM_prompt",
87
+ "rougeL_fmeasure": 0.20930811896578502,
88
+ "dataset_path": "GEM/web_nlg",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeL_fmeasure_stderr": 0.0038259333936250185
92
+ },
93
+ {
94
+ "task_name": "GEM/web_nlg_en",
95
+ "prompt_name": "PALM_prompt",
96
+ "rougeLsum_precision": 0.20275170487892208,
97
+ "dataset_path": "GEM/web_nlg",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_precision_stderr": 0.005253109590732199
101
+ },
102
+ {
103
+ "task_name": "GEM/web_nlg_en",
104
+ "prompt_name": "PALM_prompt",
105
+ "rougeLsum_recall": 0.3844755575959121,
106
+ "dataset_path": "GEM/web_nlg",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_recall_stderr": 0.004448663215506157
110
+ },
111
+ {
112
+ "task_name": "GEM/web_nlg_en",
113
+ "prompt_name": "PALM_prompt",
114
+ "rougeLsum_fmeasure": 0.21923266732565286,
115
+ "dataset_path": "GEM/web_nlg",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "rougeLsum_fmeasure_stderr": 0.004087600756703223
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 5,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-wiki_lingua_en_tldr_en_0.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/wiki_lingua_en",
5
+ "prompt_name": "tldr_en",
6
+ "rouge1_precision": 0.11259234653795358,
7
+ "dataset_path": "GEM/wiki_lingua",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "rouge1_precision_stderr": 0.0032411862971363117
11
+ },
12
+ {
13
+ "task_name": "GEM/wiki_lingua_en",
14
+ "prompt_name": "tldr_en",
15
+ "rouge1_recall": 0.14340893843595093,
16
+ "dataset_path": "GEM/wiki_lingua",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_recall_stderr": 0.0034694907773717048
20
+ },
21
+ {
22
+ "task_name": "GEM/wiki_lingua_en",
23
+ "prompt_name": "tldr_en",
24
+ "rouge1_fmeasure": 0.10762579083182928,
25
+ "dataset_path": "GEM/wiki_lingua",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_fmeasure_stderr": 0.0025835076322910672
29
+ },
30
+ {
31
+ "task_name": "GEM/wiki_lingua_en",
32
+ "prompt_name": "tldr_en",
33
+ "rouge2_precision": 0.02582999428983234,
34
+ "dataset_path": "GEM/wiki_lingua",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge2_precision_stderr": 0.0010000072112516562
38
+ },
39
+ {
40
+ "task_name": "GEM/wiki_lingua_en",
41
+ "prompt_name": "tldr_en",
42
+ "rouge2_recall": 0.03784241933814092,
43
+ "dataset_path": "GEM/wiki_lingua",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_recall_stderr": 0.001450453403192633
47
+ },
48
+ {
49
+ "task_name": "GEM/wiki_lingua_en",
50
+ "prompt_name": "tldr_en",
51
+ "rouge2_fmeasure": 0.02778920003491775,
52
+ "dataset_path": "GEM/wiki_lingua",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_fmeasure_stderr": 0.000982242456017776
56
+ },
57
+ {
58
+ "task_name": "GEM/wiki_lingua_en",
59
+ "prompt_name": "tldr_en",
60
+ "rougeL_precision": 0.08841484558766141,
61
+ "dataset_path": "GEM/wiki_lingua",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rougeL_precision_stderr": 0.0027853934411114305
65
+ },
66
+ {
67
+ "task_name": "GEM/wiki_lingua_en",
68
+ "prompt_name": "tldr_en",
69
+ "rougeL_recall": 0.1114317644839379,
70
+ "dataset_path": "GEM/wiki_lingua",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_recall_stderr": 0.0027453844256091257
74
+ },
75
+ {
76
+ "task_name": "GEM/wiki_lingua_en",
77
+ "prompt_name": "tldr_en",
78
+ "rougeL_fmeasure": 0.08192620888873649,
79
+ "dataset_path": "GEM/wiki_lingua",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_fmeasure_stderr": 0.0019339948879164794
83
+ },
84
+ {
85
+ "task_name": "GEM/wiki_lingua_en",
86
+ "prompt_name": "tldr_en",
87
+ "rougeLsum_precision": 0.1068082984161991,
88
+ "dataset_path": "GEM/wiki_lingua",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeLsum_precision_stderr": 0.0031424461382987463
92
+ },
93
+ {
94
+ "task_name": "GEM/wiki_lingua_en",
95
+ "prompt_name": "tldr_en",
96
+ "rougeLsum_recall": 0.13490305217744453,
97
+ "dataset_path": "GEM/wiki_lingua",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_recall_stderr": 0.0032803950524800847
101
+ },
102
+ {
103
+ "task_name": "GEM/wiki_lingua_en",
104
+ "prompt_name": "tldr_en",
105
+ "rougeLsum_fmeasure": 0.10120163014874665,
106
+ "dataset_path": "GEM/wiki_lingua",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_fmeasure_stderr": 0.002435237757238233
110
+ },
111
+ {
112
+ "task_name": "GEM/wiki_lingua_en",
113
+ "prompt_name": "tldr_en",
114
+ "bleu": 2.170472303270534,
115
+ "dataset_path": "GEM/wiki_lingua",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "bleu_stderr": 0.09245843828343826
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 0,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }
8b7178b44b/evaluation/generation/slim.8b7178b44b_GEM-wiki_lingua_en_tldr_en_1.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "GEM/wiki_lingua_en",
5
+ "prompt_name": "tldr_en",
6
+ "rouge1_precision": 0.19504169763237164,
7
+ "dataset_path": "GEM/wiki_lingua",
8
+ "dataset_name": "en",
9
+ "subset": null,
10
+ "rouge1_precision_stderr": 0.003161655570483573
11
+ },
12
+ {
13
+ "task_name": "GEM/wiki_lingua_en",
14
+ "prompt_name": "tldr_en",
15
+ "rouge1_recall": 0.2268980166797919,
16
+ "dataset_path": "GEM/wiki_lingua",
17
+ "dataset_name": "en",
18
+ "subset": null,
19
+ "rouge1_recall_stderr": 0.00336143207911689
20
+ },
21
+ {
22
+ "task_name": "GEM/wiki_lingua_en",
23
+ "prompt_name": "tldr_en",
24
+ "rouge1_fmeasure": 0.18153788588353004,
25
+ "dataset_path": "GEM/wiki_lingua",
26
+ "dataset_name": "en",
27
+ "subset": null,
28
+ "rouge1_fmeasure_stderr": 0.002424482153914544
29
+ },
30
+ {
31
+ "task_name": "GEM/wiki_lingua_en",
32
+ "prompt_name": "tldr_en",
33
+ "rouge2_precision": 0.049740220187040864,
34
+ "dataset_path": "GEM/wiki_lingua",
35
+ "dataset_name": "en",
36
+ "subset": null,
37
+ "rouge2_precision_stderr": 0.001561722025312558
38
+ },
39
+ {
40
+ "task_name": "GEM/wiki_lingua_en",
41
+ "prompt_name": "tldr_en",
42
+ "rouge2_recall": 0.05782059703115125,
43
+ "dataset_path": "GEM/wiki_lingua",
44
+ "dataset_name": "en",
45
+ "subset": null,
46
+ "rouge2_recall_stderr": 0.0016860297998920056
47
+ },
48
+ {
49
+ "task_name": "GEM/wiki_lingua_en",
50
+ "prompt_name": "tldr_en",
51
+ "rouge2_fmeasure": 0.044909001327117046,
52
+ "dataset_path": "GEM/wiki_lingua",
53
+ "dataset_name": "en",
54
+ "subset": null,
55
+ "rouge2_fmeasure_stderr": 0.0011943824375694858
56
+ },
57
+ {
58
+ "task_name": "GEM/wiki_lingua_en",
59
+ "prompt_name": "tldr_en",
60
+ "rougeL_precision": 0.14594590659077963,
61
+ "dataset_path": "GEM/wiki_lingua",
62
+ "dataset_name": "en",
63
+ "subset": null,
64
+ "rougeL_precision_stderr": 0.002476347943750222
65
+ },
66
+ {
67
+ "task_name": "GEM/wiki_lingua_en",
68
+ "prompt_name": "tldr_en",
69
+ "rougeL_recall": 0.1691189101402509,
70
+ "dataset_path": "GEM/wiki_lingua",
71
+ "dataset_name": "en",
72
+ "subset": null,
73
+ "rougeL_recall_stderr": 0.002588936970621776
74
+ },
75
+ {
76
+ "task_name": "GEM/wiki_lingua_en",
77
+ "prompt_name": "tldr_en",
78
+ "rougeL_fmeasure": 0.1341843957584949,
79
+ "dataset_path": "GEM/wiki_lingua",
80
+ "dataset_name": "en",
81
+ "subset": null,
82
+ "rougeL_fmeasure_stderr": 0.0017857657209747223
83
+ },
84
+ {
85
+ "task_name": "GEM/wiki_lingua_en",
86
+ "prompt_name": "tldr_en",
87
+ "rougeLsum_precision": 0.18281924229155466,
88
+ "dataset_path": "GEM/wiki_lingua",
89
+ "dataset_name": "en",
90
+ "subset": null,
91
+ "rougeLsum_precision_stderr": 0.0029977938731759806
92
+ },
93
+ {
94
+ "task_name": "GEM/wiki_lingua_en",
95
+ "prompt_name": "tldr_en",
96
+ "rougeLsum_recall": 0.21164415433278383,
97
+ "dataset_path": "GEM/wiki_lingua",
98
+ "dataset_name": "en",
99
+ "subset": null,
100
+ "rougeLsum_recall_stderr": 0.0031361900114708872
101
+ },
102
+ {
103
+ "task_name": "GEM/wiki_lingua_en",
104
+ "prompt_name": "tldr_en",
105
+ "rougeLsum_fmeasure": 0.16951014920125493,
106
+ "dataset_path": "GEM/wiki_lingua",
107
+ "dataset_name": "en",
108
+ "subset": null,
109
+ "rougeLsum_fmeasure_stderr": 0.0022640636265336893
110
+ },
111
+ {
112
+ "task_name": "GEM/wiki_lingua_en",
113
+ "prompt_name": "tldr_en",
114
+ "bleu": 3.020335174960559,
115
+ "dataset_path": "GEM/wiki_lingua",
116
+ "dataset_name": "en",
117
+ "subset": null,
118
+ "bleu_stderr": 0.06787715772935045
119
+ }
120
+ ],
121
+ "config": {
122
+ "model": "hf-causal",
123
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b44b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
124
+ "task_args": "",
125
+ "num_fewshot": 1,
126
+ "batch_size": 16,
127
+ "device": "cuda",
128
+ "use_cache": false,
129
+ "limit": 3000,
130
+ "bootstrap_iters": 10,
131
+ "seed": 1234
132
+ }
133
+ }