|
import logging |
|
import re |
|
from typing import List |
|
|
|
import numpy as np |
|
from transformers import Pipeline, PreTrainedTokenizer |
|
|
|
from transformers.utils import is_tf_available |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
INSTRUCTION_KEY = "### Instruction:" |
|
RESPONSE_KEY = "### Response:" |
|
END_KEY = "### End" |
|
INTRO_BLURB = ( |
|
"Below is an instruction that describes a task. Write a response that appropriately completes the request." |
|
) |
|
|
|
|
|
|
|
PROMPT_FOR_GENERATION_FORMAT = """{intro} |
|
|
|
{instruction_key} |
|
{instruction} |
|
|
|
{response_key} |
|
""".format( |
|
intro=INTRO_BLURB, |
|
instruction_key=INSTRUCTION_KEY, |
|
instruction="{instruction}", |
|
response_key=RESPONSE_KEY, |
|
) |
|
|
|
|
|
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int: |
|
"""Gets the token ID for a given string that has been added to the tokenizer as a special token. |
|
|
|
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are |
|
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to. |
|
|
|
Args: |
|
tokenizer (PreTrainedTokenizer): the tokenizer |
|
key (str): the key to convert to a single token |
|
|
|
Raises: |
|
RuntimeError: if more than one ID was generated |
|
|
|
Returns: |
|
int: the token ID for the given key |
|
""" |
|
token_ids = tokenizer.encode(key) |
|
if len(token_ids) > 1: |
|
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}") |
|
return token_ids[0] |
|
|
|
|
|
class InstructionTextGenerationPipeline(Pipeline): |
|
def __init__( |
|
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs |
|
): |
|
"""Initialize the pipeline |
|
|
|
Args: |
|
do_sample (bool, optional): Whether or not to use sampling. Defaults to True. |
|
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128. |
|
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with |
|
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92. |
|
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering. |
|
Defaults to 0. |
|
""" |
|
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, |
|
**kwargs) |
|
|
|
def _sanitize_parameters(self, |
|
return_full_text: bool = None, |
|
**generate_kwargs): |
|
preprocess_params = {} |
|
|
|
|
|
|
|
tokenizer_response_key = next( |
|
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None |
|
) |
|
|
|
response_key_token_id = None |
|
end_key_token_id = None |
|
if tokenizer_response_key: |
|
try: |
|
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key) |
|
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY) |
|
|
|
|
|
generate_kwargs["eos_token_id"] = end_key_token_id |
|
except ValueError: |
|
pass |
|
|
|
forward_params = generate_kwargs |
|
postprocess_params = { |
|
"response_key_token_id": response_key_token_id, |
|
"end_key_token_id": end_key_token_id |
|
} |
|
|
|
if return_full_text is not None: |
|
postprocess_params["return_full_text"] = return_full_text |
|
|
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
def preprocess(self, instruction_text, **generate_kwargs): |
|
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text) |
|
inputs = self.tokenizer( |
|
prompt_text, |
|
return_tensors="pt", |
|
) |
|
inputs["prompt_text"] = prompt_text |
|
inputs["instruction_text"] = instruction_text |
|
return inputs |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
input_ids = model_inputs["input_ids"] |
|
attention_mask = model_inputs.get("attention_mask", None) |
|
|
|
if input_ids.shape[1] == 0: |
|
input_ids = None |
|
attention_mask = None |
|
in_b = 1 |
|
else: |
|
in_b = input_ids.shape[0] |
|
|
|
generated_sequence = self.model.generate( |
|
input_ids=input_ids.to(self.model.device), |
|
attention_mask=attention_mask, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
**generate_kwargs, |
|
) |
|
|
|
out_b = generated_sequence.shape[0] |
|
if self.framework == "pt": |
|
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:]) |
|
elif self.framework == "tf": |
|
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:])) |
|
|
|
instruction_text = model_inputs.pop("instruction_text") |
|
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text} |
|
|
|
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False): |
|
|
|
generated_sequence = model_outputs["generated_sequence"][0] |
|
instruction_text = model_outputs["instruction_text"] |
|
|
|
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist() |
|
records = [] |
|
for sequence in generated_sequence: |
|
|
|
|
|
decoded = None |
|
|
|
|
|
if response_key_token_id and end_key_token_id: |
|
|
|
|
|
try: |
|
response_pos = sequence.index(response_key_token_id) |
|
except ValueError: |
|
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}") |
|
response_pos = None |
|
|
|
if response_pos: |
|
|
|
|
|
|
|
|
|
try: |
|
end_pos = sequence.index(end_key_token_id) |
|
except ValueError: |
|
end_pos = None |
|
|
|
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip() |
|
|
|
if not decoded: |
|
|
|
|
|
fully_decoded = self.tokenizer.decode(sequence) |
|
|
|
|
|
|
|
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL) |
|
|
|
if m: |
|
decoded = m.group(1).strip() |
|
else: |
|
|
|
|
|
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL) |
|
if m: |
|
decoded = m.group(1).strip() |
|
else: |
|
logger.warn(f"Failed to find response in:\n{fully_decoded}") |
|
|
|
|
|
|
|
|
|
if return_full_text: |
|
decoded = f"{instruction_text}\n{decoded}" |
|
|
|
rec = {"generated_text": decoded} |
|
|
|
records.append(rec) |
|
|
|
return records |