adalbertojunior commited on
Commit
f452269
1 Parent(s): 2e6a8ba

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -70
README.md CHANGED
@@ -1,54 +1,31 @@
1
  ---
2
  library_name: transformers
3
- base_model: models/distill-robertalex-3L-trained
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
  - adalbertojunior/entities
8
- metrics:
9
- - precision
10
- - recall
11
- - f1
12
- - accuracy
13
  model-index:
14
- - name: test_v6
15
- results:
16
- - task:
17
- name: Token Classification
18
- type: token-classification
19
- dataset:
20
- name: adalbertojunior/entities
21
- type: adalbertojunior/entities
22
- config: segmentacao
23
- split: validation
24
- args: segmentacao
25
- metrics:
26
- - name: Precision
27
- type: precision
28
- value: 0.7678083439606486
29
- - name: Recall
30
- type: recall
31
- value: 0.8550415905863258
32
- - name: F1
33
- type: f1
34
- value: 0.8090804377039739
35
- - name: Accuracy
36
- type: accuracy
37
- value: 0.9699217442249749
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
  should probably proofread and complete it, then remove this comment. -->
42
 
43
- # test_v6
44
 
45
- This model is a fine-tuned version of [models/distill-robertalex-3L-trained](https://huggingface.co/models/distill-robertalex-3L-trained) on the adalbertojunior/entities dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1536
48
- - Precision: 0.7678
49
- - Recall: 0.8550
50
- - F1: 0.8091
51
- - Accuracy: 0.9699
 
 
 
 
 
52
 
53
  ## Model description
54
 
@@ -78,39 +55,6 @@ The following hyperparameters were used during training:
78
  - lr_scheduler_warmup_steps: 500
79
  - num_epochs: 20.0
80
 
81
- ### Training results
82
-
83
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
- |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
- | 0.0925 | 19.3898 | 7000 | 0.1536 | 0.7678 | 0.8550 | 0.8091 | 0.9699 |
86
-
87
- ### Test set results
88
-
89
- | Label | Precision | Recall | F1-Score | Support |
90
- |---------------------|-----------|--------|----------|---------|
91
- | ATRIBUICAO | 0.82 | 0.82 | 0.82 | 221 |
92
- | DECISAO | 0.81 | 0.82 | 0.82 | 544 |
93
- | FUNCAO | 0.94 | 0.89 | 0.91 | 486 |
94
- | FUNDAMENTO | 0.89 | 0.83 | 0.86 | 1501 |
95
- | LOCAL | 0.85 | 0.84 | 0.85 | 245 |
96
- | ORGANIZACAO | 0.90 | 0.86 | 0.88 | 626 |
97
- | PEDIDO | 0.86 | 0.81 | 0.83 | 4341 |
98
- | PESSOA | 0.95 | 0.94 | 0.95 | 654 |
99
- | REFLEXO | 0.85 | 0.84 | 0.85 | 358 |
100
- | TIPO_ACAO | 0.93 | 0.89 | 0.91 | 341 |
101
- | TRIBUNAL | 0.96 | 0.92 | 0.94 | 190 |
102
- | VALOR_ACORDO | 0.91 | 0.71 | 0.79 | 41 |
103
- | VALOR_CAUSA | 0.89 | 0.92 | 0.90 | 62 |
104
- | VALOR_CONDENACAO | 0.89 | 0.76 | 0.82 | 72 |
105
- | VALOR_CUSTAS | 0.95 | 0.93 | 0.94 | 134 |
106
- | VALOR_PEDIDO | 0.94 | 0.81 | 0.87 | 308 |
107
- | VARA | 0.95 | 0.96 | 0.96 | 81 |
108
- | **micro avg** | 0.88 | 0.84 | 0.86 | 10205 |
109
- | **macro avg** | 0.90 | 0.86 | 0.88 | 10205 |
110
- | **weighted avg** | 0.88 | 0.84 | 0.86 | 10205 |
111
-
112
-
113
-
114
  ### Framework versions
115
 
116
  - Transformers 4.47.1
 
1
  ---
2
  library_name: transformers
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
  - adalbertojunior/entities
 
 
 
 
 
7
  model-index:
8
+ - name: test_v4
9
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # test_v4
16
 
17
+ This model is a fine-tuned version of [./models/entities/test_v4](https://huggingface.co/./models/entities/test_v4) on the adalbertojunior/entities dataset.
18
  It achieves the following results on the evaluation set:
19
+ - eval_loss: 0.1648
20
+ - eval_model_preparation_time: 0.0009
21
+ - eval_precision: 0.8411
22
+ - eval_recall: 0.8900
23
+ - eval_f1: 0.8649
24
+ - eval_accuracy: 0.9744
25
+ - eval_runtime: 177.3832
26
+ - eval_samples_per_second: 27.962
27
+ - eval_steps_per_second: 27.962
28
+ - step: 0
29
 
30
  ## Model description
31
 
 
55
  - lr_scheduler_warmup_steps: 500
56
  - num_epochs: 20.0
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ### Framework versions
59
 
60
  - Transformers 4.47.1