--- library_name: transformers base_model: models/distill-robertalex-3L-trained tags: - generated_from_trainer datasets: - adalbertojunior/entities metrics: - precision - recall - f1 - accuracy model-index: - name: test_v6 results: - task: name: Token Classification type: token-classification dataset: name: adalbertojunior/entities type: adalbertojunior/entities config: segmentacao split: validation args: segmentacao metrics: - name: Precision type: precision value: 0.7678083439606486 - name: Recall type: recall value: 0.8550415905863258 - name: F1 type: f1 value: 0.8090804377039739 - name: Accuracy type: accuracy value: 0.9699217442249749 --- # test_v6 This model is a fine-tuned version of [models/distill-robertalex-3L-trained](https://huggingface.co/models/distill-robertalex-3L-trained) on the adalbertojunior/entities dataset. It achieves the following results on the evaluation set: - Loss: 0.1536 - Precision: 0.7678 - Recall: 0.8550 - F1: 0.8091 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0925 | 19.3898 | 7000 | 0.1536 | 0.7678 | 0.8550 | 0.8091 | 0.9699 | ### Test set results | Label | Precision | Recall | F1-Score | Support | |---------------------|-----------|--------|----------|---------| | ATRIBUICAO | 0.82 | 0.82 | 0.82 | 221 | | DECISAO | 0.81 | 0.82 | 0.82 | 544 | | FUNCAO | 0.94 | 0.89 | 0.91 | 486 | | FUNDAMENTO | 0.89 | 0.83 | 0.86 | 1501 | | LOCAL | 0.85 | 0.84 | 0.85 | 245 | | ORGANIZACAO | 0.90 | 0.86 | 0.88 | 626 | | PEDIDO | 0.86 | 0.81 | 0.83 | 4341 | | PESSOA | 0.95 | 0.94 | 0.95 | 654 | | REFLEXO | 0.85 | 0.84 | 0.85 | 358 | | TIPO_ACAO | 0.93 | 0.89 | 0.91 | 341 | | TRIBUNAL | 0.96 | 0.92 | 0.94 | 190 | | VALOR_ACORDO | 0.91 | 0.71 | 0.79 | 41 | | VALOR_CAUSA | 0.89 | 0.92 | 0.90 | 62 | | VALOR_CONDENACAO | 0.89 | 0.76 | 0.82 | 72 | | VALOR_CUSTAS | 0.95 | 0.93 | 0.94 | 134 | | VALOR_PEDIDO | 0.94 | 0.81 | 0.87 | 308 | | VARA | 0.95 | 0.96 | 0.96 | 81 | | **micro avg** | 0.88 | 0.84 | 0.86 | 10205 | | **macro avg** | 0.90 | 0.86 | 0.88 | 10205 | | **weighted avg** | 0.88 | 0.84 | 0.86 | 10205 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.0.1 - Tokenizers 0.21.0