File size: 6,453 Bytes
7993b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- adalbertojunior/segmentacao
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test_v7
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: adalbertojunior/segmentacao
      type: adalbertojunior/segmentacao
      config: segmentacao
      split: validation
      args: segmentacao
    metrics:
    - name: Precision
      type: precision
      value: 0.6657754010695187
    - name: Recall
      type: recall
      value: 0.6859504132231405
    - name: F1
      type: f1
      value: 0.6757123473541385
    - name: Accuracy
      type: accuracy
      value: 0.9990518084066471
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test_v7

This model is a fine-tuned version of [./models/distill-bge-retromae-step](https://huggingface.co/./models/distill-bge-retromae-step) on the adalbertojunior/segmentacao dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0045
- Precision: 0.6658
- Recall: 0.6860
- F1: 0.6757
- Accuracy: 0.9991

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.0637 | 100  | 0.0048          | 0.5339    | 0.5647 | 0.5489 | 0.9984   |
| No log        | 0.1274 | 200  | 0.0048          | 0.5567    | 0.6226 | 0.5878 | 0.9987   |
| No log        | 0.1911 | 300  | 0.0048          | 0.5745    | 0.5950 | 0.5846 | 0.9988   |
| No log        | 0.2548 | 400  | 0.0048          | 0.5622    | 0.5978 | 0.5794 | 0.9988   |
| 0.0061        | 0.3185 | 500  | 0.0069          | 0.48      | 0.5950 | 0.5314 | 0.9983   |
| 0.0061        | 0.3822 | 600  | 0.0061          | 0.5692    | 0.6116 | 0.5896 | 0.9987   |
| 0.0061        | 0.4459 | 700  | 0.0052          | 0.5736    | 0.6226 | 0.5971 | 0.9988   |
| 0.0061        | 0.5096 | 800  | 0.0055          | 0.5921    | 0.6198 | 0.6057 | 0.9988   |
| 0.0061        | 0.5733 | 900  | 0.0057          | 0.6126    | 0.6446 | 0.6282 | 0.9989   |
| 0.0008        | 0.6370 | 1000 | 0.0065          | 0.5635    | 0.6116 | 0.5865 | 0.9987   |
| 0.0008        | 0.7007 | 1100 | 0.0060          | 0.5725    | 0.6529 | 0.6100 | 0.9987   |
| 0.0008        | 0.7645 | 1200 | 0.0061          | 0.5704    | 0.6474 | 0.6065 | 0.9988   |
| 0.0008        | 0.8282 | 1300 | 0.0053          | 0.5813    | 0.6501 | 0.6138 | 0.9988   |
| 0.0008        | 0.8919 | 1400 | 0.0045          | 0.6658    | 0.6860 | 0.6757 | 0.9991   |
| 0.0004        | 0.9556 | 1500 | 0.0049          | 0.6497    | 0.6694 | 0.6594 | 0.9990   |
| 0.0004        | 1.0193 | 1600 | 0.0054          | 0.5707    | 0.6446 | 0.6054 | 0.9988   |
| 0.0004        | 1.0830 | 1700 | 0.0047          | 0.6376    | 0.6639 | 0.6505 | 0.9990   |
| 0.0004        | 1.1467 | 1800 | 0.0048          | 0.5922    | 0.6722 | 0.6297 | 0.9989   |
| 0.0004        | 1.2104 | 1900 | 0.0041          | 0.6455    | 0.6722 | 0.6586 | 0.9990   |
| 0.0002        | 1.2741 | 2000 | 0.0053          | 0.5686    | 0.6391 | 0.6018 | 0.9987   |
| 0.0002        | 1.3378 | 2100 | 0.0046          | 0.6495    | 0.6942 | 0.6711 | 0.9990   |
| 0.0002        | 1.4015 | 2200 | 0.0049          | 0.5947    | 0.6749 | 0.6323 | 0.9988   |
| 0.0002        | 1.4652 | 2300 | 0.0045          | 0.6125    | 0.6749 | 0.6422 | 0.9989   |
| 0.0002        | 1.5289 | 2400 | 0.0045          | 0.5701    | 0.6722 | 0.6169 | 0.9988   |
| 0.0002        | 1.5926 | 2500 | 0.0058          | 0.5321    | 0.6391 | 0.5807 | 0.9986   |
| 0.0002        | 1.6563 | 2600 | 0.0056          | 0.5110    | 0.6419 | 0.5690 | 0.9985   |
| 0.0002        | 1.7200 | 2700 | 0.0052          | 0.5792    | 0.6446 | 0.6102 | 0.9988   |
| 0.0002        | 1.7837 | 2800 | 0.0047          | 0.5941    | 0.6612 | 0.6258 | 0.9989   |
| 0.0002        | 1.8474 | 2900 | 0.0051          | 0.5655    | 0.6419 | 0.6013 | 0.9988   |
| 0.0001        | 1.9111 | 3000 | 0.0044          | 0.5866    | 0.6529 | 0.6180 | 0.9989   |
| 0.0001        | 1.9748 | 3100 | 0.0042          | 0.5792    | 0.6446 | 0.6102 | 0.9988   |
| 0.0001        | 2.0385 | 3200 | 0.0045          | 0.6015    | 0.6694 | 0.6336 | 0.9989   |
| 0.0001        | 2.1022 | 3300 | 0.0063          | 0.5409    | 0.6556 | 0.5928 | 0.9987   |
| 0.0001        | 2.1659 | 3400 | 0.0047          | 0.5887    | 0.6584 | 0.6216 | 0.9989   |
| 0.0001        | 2.2297 | 3500 | 0.0045          | 0.6131    | 0.6722 | 0.6413 | 0.9989   |
| 0.0001        | 2.2934 | 3600 | 0.0047          | 0.6193    | 0.6722 | 0.6446 | 0.9989   |
| 0.0001        | 2.3571 | 3700 | 0.0047          | 0.6091    | 0.6612 | 0.6341 | 0.9989   |
| 0.0001        | 2.4208 | 3800 | 0.0047          | 0.6205    | 0.6667 | 0.6428 | 0.9989   |
| 0.0001        | 2.4845 | 3900 | 0.0044          | 0.6070    | 0.6722 | 0.6379 | 0.9989   |
| 0.0001        | 2.5482 | 4000 | 0.0052          | 0.5355    | 0.6226 | 0.5758 | 0.9987   |
| 0.0001        | 2.6119 | 4100 | 0.0047          | 0.5871    | 0.6501 | 0.6170 | 0.9989   |
| 0.0001        | 2.6756 | 4200 | 0.0049          | 0.5739    | 0.6419 | 0.6060 | 0.9988   |
| 0.0001        | 2.7393 | 4300 | 0.0049          | 0.5634    | 0.6364 | 0.5977 | 0.9988   |
| 0.0001        | 2.8030 | 4400 | 0.0052          | 0.5634    | 0.6364 | 0.5977 | 0.9988   |
| 0.0           | 2.8667 | 4500 | 0.0049          | 0.5739    | 0.6419 | 0.6060 | 0.9988   |
| 0.0           | 2.9304 | 4600 | 0.0044          | 0.5796    | 0.6419 | 0.6092 | 0.9988   |
| 0.0           | 2.9941 | 4700 | 0.0047          | 0.5796    | 0.6419 | 0.6092 | 0.9988   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0