JonasLoos commited on
Commit
2f380cf
1 Parent(s): a99b465

v1.1: add accelData

Browse files
Files changed (2) hide show
  1. NYUv2.py +6 -2
  2. README.md +11 -7
NYUv2.py CHANGED
@@ -3,7 +3,7 @@
3
  import numpy as np
4
  import h5py
5
  import datasets
6
- from datasets import BuilderConfig, Features, Value, SplitGenerator, Split, Array2D, Image
7
  import hashlib
8
 
9
 
@@ -39,7 +39,7 @@ _FILE_HASH = "520609c519fba3ba5ac58c8fefcc3530"
39
  class NYUv2(datasets.GeneratorBasedBuilder):
40
  """NYU Depth Dataset V2"""
41
 
42
- VERSION = datasets.Version("1.0.0")
43
 
44
  BUILDER_CONFIGS = [
45
  BuilderConfig(name="default", version=VERSION, description="Default configuration for NYUv2 dataset"),
@@ -54,6 +54,7 @@ class NYUv2(datasets.GeneratorBasedBuilder):
54
  "label": Array2D(dtype="int32", shape=(640, 480)),
55
  "scene": Value("string"),
56
  "scene_type": Value("string"),
 
57
  })
58
 
59
  return datasets.DatasetInfo(
@@ -88,12 +89,14 @@ class NYUv2(datasets.GeneratorBasedBuilder):
88
 
89
  def _generate_examples(self, filepath, split):
90
  with h5py.File(filepath, 'r') as f:
 
91
  images = np.array(f['images'])
92
  depths = np.array(f['depths'])
93
  instances = np.array(f['instances'])
94
  labels = np.array(f['labels'])
95
  scenes = [''.join(chr(int(x)) for x in f[y]) for y in f.get('scenes')[0]]
96
  scene_types = [''.join(chr(int(x)) for x in f[y]) for y in f.get('sceneTypes')[0]]
 
97
 
98
  for idx in range(images.shape[0]):
99
  yield idx, {
@@ -103,4 +106,5 @@ class NYUv2(datasets.GeneratorBasedBuilder):
103
  "label": labels[idx],
104
  "scene": scenes[idx],
105
  "scene_type": scene_types[idx],
 
106
  }
 
3
  import numpy as np
4
  import h5py
5
  import datasets
6
+ from datasets import BuilderConfig, Features, Value, SplitGenerator, Array2D, Image, Sequence
7
  import hashlib
8
 
9
 
 
39
  class NYUv2(datasets.GeneratorBasedBuilder):
40
  """NYU Depth Dataset V2"""
41
 
42
+ VERSION = datasets.Version("1.1.0")
43
 
44
  BUILDER_CONFIGS = [
45
  BuilderConfig(name="default", version=VERSION, description="Default configuration for NYUv2 dataset"),
 
54
  "label": Array2D(dtype="int32", shape=(640, 480)),
55
  "scene": Value("string"),
56
  "scene_type": Value("string"),
57
+ 'accelData': Sequence(Value("float32"), length=4),
58
  })
59
 
60
  return datasets.DatasetInfo(
 
89
 
90
  def _generate_examples(self, filepath, split):
91
  with h5py.File(filepath, 'r') as f:
92
+ # available keys: ['accelData','depths','images','instances','labels','names','namesToIds','rawDepthFilenames','rawDepths','rawRgbFilenames','sceneTypes','scenes',]
93
  images = np.array(f['images'])
94
  depths = np.array(f['depths'])
95
  instances = np.array(f['instances'])
96
  labels = np.array(f['labels'])
97
  scenes = [''.join(chr(int(x)) for x in f[y]) for y in f.get('scenes')[0]]
98
  scene_types = [''.join(chr(int(x)) for x in f[y]) for y in f.get('sceneTypes')[0]]
99
+ accelData = np.array(f['accelData']).T
100
 
101
  for idx in range(images.shape[0]):
102
  yield idx, {
 
106
  "label": labels[idx],
107
  "scene": scenes[idx],
108
  "scene_type": scene_types[idx],
109
+ "accelData": accelData[idx],
110
  }
README.md CHANGED
@@ -1,6 +1,9 @@
1
  ---
2
  size_categories:
3
  - 1K<n<10K
 
 
 
4
  paperswithcode_id: nyuv2
5
  tags:
6
  - depth-estimation
@@ -27,15 +30,15 @@ dataset_info:
27
  dtype: string
28
  - name: scene_type
29
  dtype: string
 
 
 
30
  splits:
31
  - name: train
32
- num_bytes: 4096466619
33
  num_examples: 1449
34
  download_size: 2972037809
35
- dataset_size: 4096466619
36
- task_categories:
37
- - depth-estimation
38
- - image-segmentation
39
  ---
40
 
41
  # NYU Depth Dataset V2
@@ -94,10 +97,11 @@ dataset = load_dataset("0jl/NYUv2", trust_remote_code=True, split="train")
94
  The dataset contains only one training split with the following features:
95
 
96
  - `image`: RGB image (PIL.Image.Image, shape: (640, 480, 3))
97
- - `depth`: Depth map (numpy.ndarray, shape: (640, 480), dtype: float32)
98
- - `label`: Semantic segmentation labels (numpy.ndarray, shape: (640, 480), dtype: int32)
99
  - `scene`: Scene name (string)
100
  - `scene_type`: Scene type (string)
 
101
 
102
 
103
  ## Citation Information
 
1
  ---
2
  size_categories:
3
  - 1K<n<10K
4
+ task_categories:
5
+ - depth-estimation
6
+ - image-segmentation
7
  paperswithcode_id: nyuv2
8
  tags:
9
  - depth-estimation
 
30
  dtype: string
31
  - name: scene_type
32
  dtype: string
33
+ - name: accelData
34
+ sequence: float32
35
+ length: 4
36
  splits:
37
  - name: train
38
+ num_bytes: 4096489803
39
  num_examples: 1449
40
  download_size: 2972037809
41
+ dataset_size: 4096489803
 
 
 
42
  ---
43
 
44
  # NYU Depth Dataset V2
 
97
  The dataset contains only one training split with the following features:
98
 
99
  - `image`: RGB image (PIL.Image.Image, shape: (640, 480, 3))
100
+ - `depth`: Depth map (2D array, shape: (640, 480), dtype: float32)
101
+ - `label`: Semantic segmentation labels (2D array, shape: (640, 480), dtype: int32)
102
  - `scene`: Scene name (string)
103
  - `scene_type`: Scene type (string)
104
+ - `accelData`: Acceleration data (list, shape: (4,), dtype: float32)
105
 
106
 
107
  ## Citation Information