|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_VERSION = "1.2.1" |
|
|
|
_CITATION = f""" |
|
@dataset{{unsplash-lite-dataset, |
|
title = {{Unsplash Lite Dataset {_VERSION}}}, |
|
url = {{\\url{{https://github.com/unsplash/datasets}}}}, |
|
author = {{Unsplash}}, |
|
year = {{2023}}, |
|
month = {{May}}, |
|
day = {{02}}, |
|
}} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This dataset, available for commercial and noncommercial usage, |
|
contains 25k nature-themed Unsplash photos, 25k keywords, and 1M searches. |
|
""" |
|
|
|
_HOMEPAGE = f"https://github.com/unsplash/datasets/tree/{_VERSION}" |
|
|
|
_URL = f"https://unsplash.com/data/lite/{_VERSION}" |
|
|
|
_LICENSE = "Unsplash Dataset License" |
|
|
|
_TSV = ( |
|
"collections", |
|
"colors", |
|
"conversions", |
|
"keywords", |
|
"photos", |
|
) |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"photo": { |
|
"id": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"image_url": datasets.Value("string"), |
|
"submitted_at": datasets.Value("string"), |
|
"featured": datasets.Value("bool"), |
|
"width": datasets.Value("uint16"), |
|
"height": datasets.Value("uint16"), |
|
"aspect_ratio": datasets.Value("float32"), |
|
"description": datasets.Value("string"), |
|
"blur_hash": datasets.Value("string"), |
|
}, |
|
"photographer": { |
|
"username": datasets.Value("string"), |
|
"first_name": datasets.Value("string"), |
|
"last_name": datasets.Value("string"), |
|
}, |
|
"exif": { |
|
"camera_make": datasets.Value("string"), |
|
"camera_model": datasets.Value("string"), |
|
"iso": datasets.Value("string"), |
|
"aperture_value": datasets.Value("string"), |
|
"focal_length": datasets.Value("string"), |
|
"exposure_time": datasets.Value("string"), |
|
}, |
|
"location": { |
|
"name": datasets.Value("string"), |
|
"latitude": datasets.Value("float32"), |
|
"longitude": datasets.Value("float32"), |
|
"country": datasets.Value("string"), |
|
"city": datasets.Value("string"), |
|
}, |
|
"stats": { |
|
"views": datasets.Value("uint32"), |
|
"downloads": datasets.Value("uint32"), |
|
}, |
|
"ai": { |
|
"description": datasets.Value("string"), |
|
"primary_landmark_name": datasets.Value("string"), |
|
"primary_landmark_latitude": datasets.Value("string"), |
|
"primary_landmark_longitude": datasets.Value("string"), |
|
"primary_landmark_confidence": datasets.Value("string"), |
|
}, |
|
"keywords": [ |
|
{ |
|
"keyword": datasets.Value("string"), |
|
"ai_service_1_confidence": datasets.Value("string"), |
|
"ai_service_2_confidence": datasets.Value("string"), |
|
"suggested_by_user": datasets.Value("bool"), |
|
}, |
|
], |
|
"collections": [ |
|
{ |
|
"collection_id": datasets.Value("string"), |
|
"collection_title": datasets.Value("string"), |
|
"photo_collected_at": datasets.Value("string"), |
|
}, |
|
], |
|
"conversions": [ |
|
{ |
|
"converted_at": datasets.Value("string"), |
|
"conversion_type": datasets.Value("string"), |
|
"keyword": datasets.Value("string"), |
|
"anonymous_user_id": datasets.Value("string"), |
|
"conversion_country": datasets.Value("string"), |
|
}, |
|
], |
|
"colors": [ |
|
{ |
|
"hex": datasets.Value("string"), |
|
"red": datasets.Value("uint8"), |
|
"green": datasets.Value("uint8"), |
|
"blue": datasets.Value("uint8"), |
|
"keyword": datasets.Value("string"), |
|
"ai_coverage": datasets.Value("float32"), |
|
"ai_score": datasets.Value("float32"), |
|
}, |
|
], |
|
}, |
|
) |
|
|
|
def df_withprefix(df, prefix, exclude=None): |
|
columns = [col for col in df.columns if col.startswith(prefix)] |
|
if exclude is not None: |
|
columns = [col for col in columns if exclude not in col] |
|
if "photo_id" not in columns: |
|
columns.append("photo_id") |
|
|
|
return df[columns].rename(columns=lambda col: col.removeprefix(prefix)) |
|
|
|
class Unsplash(datasets.GeneratorBasedBuilder): |
|
"""The Unsplash Lite dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 100 |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=_FEATURES, |
|
supervised_keys=None, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
version=_VERSION, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = Path(dl_manager.download_and_extract(_URL)) |
|
|
|
|
|
dataframes = {} |
|
for doc in _TSV: |
|
|
|
frames = [] |
|
for filename in archive_path.glob(f"{doc}.tsv*"): |
|
frame = pd.read_csv(filename, sep="\t", header=0) |
|
frames.append(frame) |
|
|
|
|
|
concat_frames = pd.concat(frames, axis=0, ignore_index=True) |
|
|
|
if doc != "photos": |
|
dataframes[doc] = concat_frames |
|
else: |
|
|
|
dataframes["photo"] = df_withprefix(concat_frames, "photo_", "location") |
|
dataframes["photo"]["blur_hash"] = concat_frames["blur_hash"] |
|
dataframes["photographer"] = df_withprefix(concat_frames, "photographer_") |
|
dataframes["exif"] = df_withprefix(concat_frames, "exif_") |
|
dataframes["location"] = df_withprefix(concat_frames, "photo_location_") |
|
dataframes["stats"] = df_withprefix(concat_frames, "stats_") |
|
dataframes["ai"] = df_withprefix(concat_frames, "ai_") |
|
|
|
|
|
dataframes["photo"]["featured"] = dataframes["photo"]["featured"].map({"t": True, "f": False}) |
|
dataframes["keywords"]["suggested_by_user"] = dataframes["keywords"]["suggested_by_user"].map({"t": True, "f": False}) |
|
|
|
|
|
for doc in dataframes.keys(): |
|
if doc in _TSV: |
|
features = _FEATURES[doc][0] |
|
else: |
|
features = _FEATURES[doc] |
|
|
|
dataframes[doc].astype({ |
|
key: features[key].dtype |
|
for key in features.keys() |
|
}) |
|
|
|
|
|
for key in _TSV[:-1]: |
|
dataframes[key] = dataframes[key].groupby("photo_id") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"dataframes": dataframes}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dataframes): |
|
|
|
photo_id_frames = {} |
|
for index, row in dataframes["photo"].iterrows(): |
|
photo_id = row["id"] |
|
photographer = dataframes["photographer"].iloc[index] |
|
exif = dataframes["exif"].iloc[index] |
|
location = dataframes["location"].iloc[index] |
|
stats = dataframes["stats"].iloc[index] |
|
ai = dataframes["ai"].iloc[index] |
|
|
|
for key in _TSV[:-1]: |
|
try: |
|
photo_id_frames[key] = dataframes[key].get_group(photo_id) |
|
except: |
|
photo_id_frames[key] = pd.DataFrame() |
|
|
|
data = { |
|
"photo": { |
|
"id": photo_id, |
|
"url": row["url"], |
|
"image_url": row["image_url"], |
|
"submitted_at": row["submitted_at"], |
|
"featured": row["featured"], |
|
"width": row["width"], |
|
"height": row["height"], |
|
"aspect_ratio": row["aspect_ratio"], |
|
"description": row["description"], |
|
"blur_hash": row["blur_hash"], |
|
}, |
|
"photographer": { |
|
"username": photographer["username"], |
|
"first_name": photographer["first_name"], |
|
"last_name": photographer["last_name"], |
|
}, |
|
"exif": { |
|
"camera_make": exif["camera_make"], |
|
"camera_model": exif["camera_model"], |
|
"iso": exif["iso"], |
|
"aperture_value": exif["aperture_value"], |
|
"focal_length": exif["focal_length"], |
|
"exposure_time": exif["exposure_time"], |
|
}, |
|
"location": { |
|
"name": location["name"], |
|
"latitude": location["latitude"], |
|
"longitude": location["longitude"], |
|
"country": location["country"], |
|
"city": location["city"], |
|
}, |
|
"stats": { |
|
"views": stats["views"], |
|
"downloads": stats["downloads"], |
|
}, |
|
"ai": { |
|
"description": ai["description"], |
|
"primary_landmark_name": ai["primary_landmark_name"], |
|
"primary_landmark_latitude": ai["primary_landmark_latitude"], |
|
"primary_landmark_longitude": ai["primary_landmark_longitude"], |
|
"primary_landmark_confidence": ai["primary_landmark_confidence"], |
|
}, |
|
"keywords": [ |
|
{ |
|
"keyword": keyword["keyword"], |
|
"ai_service_1_confidence": keyword["ai_service_1_confidence"], |
|
"ai_service_2_confidence": keyword["ai_service_2_confidence"], |
|
"suggested_by_user": keyword["suggested_by_user"], |
|
} |
|
for _, keyword in photo_id_frames["keywords"].iterrows() |
|
], |
|
"collections": [ |
|
{ |
|
"collection_id": collection["collection_id"], |
|
"collection_title": str(collection["collection_title"]), |
|
"photo_collected_at": collection["photo_collected_at"], |
|
} |
|
for _, collection in photo_id_frames["collections"].iterrows() |
|
], |
|
"conversions": [ |
|
{ |
|
"converted_at": conversion["converted_at"], |
|
"conversion_type": conversion["conversion_type"], |
|
"keyword": conversion["keyword"], |
|
"anonymous_user_id": conversion["anonymous_user_id"], |
|
"conversion_country": str(conversion["conversion_country"]), |
|
} |
|
for _, conversion in photo_id_frames["conversions"].iterrows() |
|
], |
|
"colors": [ |
|
{ |
|
"hex": color["hex"], |
|
"red": color["red"], |
|
"green": color["green"], |
|
"blue": color["blue"], |
|
"keyword": color["keyword"], |
|
"ai_coverage": color["ai_coverage"], |
|
"ai_score": color["ai_score"], |
|
} |
|
for _, color in photo_id_frames["colors"].iterrows() |
|
], |
|
} |
|
|
|
yield index, data |
|
|