Datasets:
Size:
10M<n<100M
License:
metadata
license: apache-2.0
pretty_name: 1X World Model Challenge Dataset
size_categories:
- 10M<n<100M
viewer: false
Dataset for the 1X World Model Challenge.
Download with:
huggingface-cli download 1x-technologies/worldmodel --repo-type dataset --local-dir data
Current version: v1.1
- magvit2.ckpt - weights for MAGVIT2 image tokenizer we used. We provide the encoder (tokenizer) and decoder (de-tokenizer) weights.
Contents of train/val_v1.1:
- video.bin - 16x16 image patches at 30hz, each patch is vector-quantized into 2^18 possible integer values. These can be decoded into 256x256 RGB images using the provided
magvig2.ckpt
weights. - segment_ids.bin - for each frame
segment_ids[i]
uniquely points to the segment index that framei
came from. You may want to use this to separate non-contiguous frames from different videos (transitions). - actions/ - a folder of action arrays stored in
np.float32
format. For framei
, the corresponding action is given byjoint_pos[i]
,driving_command[i]
,neck_desired[i]
, and so on. The shapes and definitions of the arrays are as follows (N is the number of frames):- joint_pos
(N, 21)
: Joint positions. SeeIndex-to-Joint Mapping
below. - driving_command
(N, 2)
: Linear and angular velocities. - neck_desired
(N, 1)
: Desired neck pitch. - l_hand_closure
(N, 1)
: Left hand closure state (0 = open, 1 = closed). - r_hand_closure
(N, 1)
: Right hand closure state (0 = open, 1 = closed).
Index-to-Joint Mapping
{ 0: HIP_YAW 1: HIP_ROLL 2: HIP_PITCH 3: KNEE_PITCH 4: ANKLE_ROLL 5: ANKLE_PITCH 6: LEFT_SHOULDER_PITCH 7: LEFT_SHOULDER_ROLL 8: LEFT_SHOULDER_YAW 9: LEFT_ELBOW_PITCH 10: LEFT_ELBOW_YAW 11: LEFT_WRIST_PITCH 12: LEFT_WRIST_ROLL 13: RIGHT_SHOULDER_PITCH 14: RIGHT_SHOULDER_ROLL 15: RIGHT_SHOULDER_YAW 16: RIGHT_ELBOW_PITCH 17: RIGHT_ELBOW_YAW 18: RIGHT_WRIST_PITCH 19: RIGHT_WRIST_ROLL 20: NECK_PITCH }
- joint_pos
We also provide a small val_v1.1
data split containing held-out examples not seen in the training set, in case you want to try evaluating your model on held-out frames.