Datasets:
Size:
10M<n<100M
License:
""" | |
NOTE: Download the Cosmos-Tokenizer repository and pre-trained model weights before running this script. | |
For full installation and setup instructions, please refer to: | |
https://github.com/NVIDIA/Cosmos-Tokenizer#readme | |
""" | |
import math | |
from pathlib import Path | |
import av | |
import numpy as np | |
import torch | |
from cosmos_tokenizer.utils import tensor2numpy | |
from cosmos_tokenizer.video_lib import CausalVideoTokenizer | |
input_dir = Path("../worldmodel/val_v2.0") | |
output_dir = Path("/tmp/reconst_1xgpt/") | |
model_name = "Cosmos-Tokenizer-DV8x8x8" | |
decoder_path = Path("pretrained_ckpts") / model_name / "decoder.jit" | |
print(f"Output directory exists: {input_dir.exists()}") | |
print(f"Decoder path exists: {decoder_path.exists()}") | |
rank = 0 | |
metadata_path = input_dir / f"metadata_{rank}.json" | |
if not metadata_path.exists(): | |
raise FileNotFoundError(f"Metadata file not found at {metadata_path}") | |
with open(metadata_path, "r") as f: | |
metadata_shard = json.load(f) | |
total_frames = metadata_shard["shard_num_frames"] | |
print(f"Total frames: {total_frames}") | |
encoded_video_dataset = np.memmap(input_dir / f"video_{rank}.bin", dtype=np.int32, mode="r", shape=(math.ceil(total_frames / 17), 3, 32, 32)) | |
print(f"Encoded video dataset shape: {encoded_video_dataset.shape}") | |
indices = torch.tensor(encoded_video_dataset, device="cuda") if not isinstance(encoded_video_dataset, torch.Tensor) else encoded_video_dataset | |
try: | |
decoder = CausalVideoTokenizer(checkpoint_dec=str(decoder_path)) | |
if decoder._dec_model is None: | |
raise RuntimeError(f"Failed to load decoder model from {decoder_path}") | |
print("Decoder initialized successfully.") | |
except Exception as e: | |
raise RuntimeError(f"Error loading decoder: {str(e)}") from e | |
batch_size = 1 | |
fps = 30 | |
output_file = output_dir / "reconstructed_video.mp4" | |
first_batch = torch.from_numpy(encoded_video_dataset[0:1]).cuda() | |
with torch.no_grad(): | |
first_output = decoder.decode(first_batch).float() | |
_, _, height, width = first_output.shape[-4:] | |
print(f"Output video dimensions: {width}x{height}") | |
ec = av.open(str(output_file), mode="w") | |
es = ec.add_stream("hevc_nvenc", rate=30) | |
es.width = 256 | |
es.height = 256 | |
num_batches = math.ceil(len(encoded_video_dataset) / batch_size) | |
for i in range(num_batches): | |
start_idx = i * batch_size | |
end_idx = min((i + 1) * batch_size, len(encoded_video_dataset)) | |
batch = torch.from_numpy(encoded_video_dataset[start_idx:end_idx]).cuda() | |
with torch.no_grad(): | |
# [B, 3, 17, 256, 256] | |
reconstructed_batch = decoder.decode(batch) | |
# (B, 17, 256, 256, 3) | |
reconstructed_batch = tensor2numpy(reconstructed_batch) | |
# frame: 17, 256, 256, 3 | |
for this_batch in reconstructed_batch: | |
for single_frame in this_batch: # Temporal dimension | |
# 256, 256, 3 | |
for ep in es.encode(av.VideoFrame.from_ndarray(single_frame, format="rgb24")): | |
ec.mux(ep) | |
print(f"Processed batch {i + 1}/{num_batches}", flush=True) | |
if i == 100: | |
break | |
ec.close() | |
print(f"Video saved to: {output_file}") |