Datasets:
Size:
10M<n<100M
License:
Create unpack_data.py
Browse files- unpack_data.py +31 -0
unpack_data.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Example script to unpack one shard of the 1xGPT v2.0 video dataset."""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import pathlib
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
dir_path = pathlib.Path("worldmodel/val_v2.0")
|
10 |
+
rank = 0
|
11 |
+
|
12 |
+
# load metadata.json
|
13 |
+
metadata = json.load(open(dir_path / "metadata.json"))
|
14 |
+
metadata_shard = json.load(open(dir_path / f"metadata_{rank}.json"))
|
15 |
+
|
16 |
+
total_frames = metadata_shard["shard_num_frames"]
|
17 |
+
|
18 |
+
|
19 |
+
maps = [
|
20 |
+
("segment_idx", np.int32, []),
|
21 |
+
("states", np.float32, [25]),
|
22 |
+
]
|
23 |
+
|
24 |
+
video_path = dir_path / "video_0.mp4"
|
25 |
+
|
26 |
+
for m, dtype, shape in maps:
|
27 |
+
filename = dir_path / f"{m}_{rank}.bin"
|
28 |
+
print("Reading", filename, [total_frames] + shape)
|
29 |
+
m_out = np.memmap(filename, dtype=dtype, mode="r", shape=tuple([total_frames] + shape))
|
30 |
+
assert m_out.shape[0] == total_frames
|
31 |
+
|