""" NOTE: Download the Cosmos-Tokenizer repository and pre-trained model weights before running this script. For full installation and setup instructions, please refer to: https://github.com/NVIDIA/Cosmos-Tokenizer#readme """ import math from pathlib import Path import av import numpy as np import torch from cosmos_tokenizer.utils import tensor2numpy from cosmos_tokenizer.video_lib import CausalVideoTokenizer input_dir = Path("../worldmodel/val_v2.0") output_dir = Path("/tmp/reconst_1xgpt/") model_name = "Cosmos-Tokenizer-DV8x8x8" decoder_path = Path("pretrained_ckpts") / model_name / "decoder.jit" print(f"Output directory exists: {input_dir.exists()}") print(f"Decoder path exists: {decoder_path.exists()}") rank = 0 metadata_path = input_dir / f"metadata_{rank}.json" if not metadata_path.exists(): raise FileNotFoundError(f"Metadata file not found at {metadata_path}") with open(metadata_path, "r") as f: metadata_shard = json.load(f) total_frames = metadata_shard["shard_num_frames"] print(f"Total frames: {total_frames}") encoded_video_dataset = np.memmap(input_dir / f"video_{rank}.bin", dtype=np.int32, mode="r", shape=(math.ceil(total_frames / 17), 3, 32, 32)) print(f"Encoded video dataset shape: {encoded_video_dataset.shape}") indices = torch.tensor(encoded_video_dataset, device="cuda") if not isinstance(encoded_video_dataset, torch.Tensor) else encoded_video_dataset try: decoder = CausalVideoTokenizer(checkpoint_dec=str(decoder_path)) if decoder._dec_model is None: raise RuntimeError(f"Failed to load decoder model from {decoder_path}") print("Decoder initialized successfully.") except Exception as e: raise RuntimeError(f"Error loading decoder: {str(e)}") from e batch_size = 1 fps = 30 output_file = output_dir / "reconstructed_video.mp4" first_batch = torch.from_numpy(encoded_video_dataset[0:1]).cuda() with torch.no_grad(): first_output = decoder.decode(first_batch).float() _, _, height, width = first_output.shape[-4:] print(f"Output video dimensions: {width}x{height}") ec = av.open(str(output_file), mode="w") es = ec.add_stream("hevc_nvenc", rate=30) es.width = 256 es.height = 256 num_batches = math.ceil(len(encoded_video_dataset) / batch_size) for i in range(num_batches): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, len(encoded_video_dataset)) batch = torch.from_numpy(encoded_video_dataset[start_idx:end_idx]).cuda() with torch.no_grad(): # [B, 3, 17, 256, 256] reconstructed_batch = decoder.decode(batch) # (B, 17, 256, 256, 3) reconstructed_batch = tensor2numpy(reconstructed_batch) # frame: 17, 256, 256, 3 for this_batch in reconstructed_batch: for single_frame in this_batch: # Temporal dimension # 256, 256, 3 for ep in es.encode(av.VideoFrame.from_ndarray(single_frame, format="rgb24")): ec.mux(ep) print(f"Processed batch {i + 1}/{num_batches}", flush=True) if i == 100: break ec.close() print(f"Video saved to: {output_file}")