|
|
|
import sys |
|
sys.path.append('./') |
|
from typing import Dict |
|
import numpy as np |
|
from omegaconf import DictConfig, ListConfig |
|
import torch |
|
from torch.utils.data import Dataset |
|
from pathlib import Path |
|
import json |
|
from PIL import Image |
|
from torchvision import transforms |
|
import torchvision |
|
from einops import rearrange |
|
import pytorch_lightning as pl |
|
import copy |
|
import csv |
|
import cv2 |
|
import random |
|
import matplotlib.pyplot as plt |
|
from torch.utils.data import DataLoader |
|
import json |
|
import os, sys |
|
import math |
|
from torch.utils.data.distributed import DistributedSampler |
|
import albumentations |
|
import time |
|
from tqdm import tqdm |
|
import torch.nn.functional as F |
|
import pdb |
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" |
|
from ctypes import CDLL, c_void_p, c_int,c_int32, c_float,c_bool |
|
quick_zbuff = CDLL("./lib/build/zbuff.so") |
|
DEBUG=False |
|
|
|
|
|
|
|
|
|
def get_coordinate_xy(coord_shape, device): |
|
"""get meshgride coordinate of x, y and the shape is (B, H, W)""" |
|
bs, height, width = coord_shape |
|
y_coord, x_coord = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),\ |
|
torch.arange(0, width, dtype=torch.float32, device=device)]) |
|
y_coord, x_coord = y_coord.contiguous(), x_coord.contiguous() |
|
y_coord, x_coord = y_coord.unsqueeze(0).repeat(bs, 1, 1), \ |
|
x_coord.unsqueeze(0).repeat(bs, 1, 1) |
|
|
|
return x_coord, y_coord |
|
|
|
|
|
|
|
def read_dnormal(normald_path, cond_pos): |
|
cond_cam_dis = np.linalg.norm(cond_pos, 2) |
|
|
|
near = 0.867 |
|
near_distance = cond_cam_dis - near |
|
|
|
normald = cv2.imread(normald_path, cv2.IMREAD_UNCHANGED).astype(np.float32) |
|
depth = normald[...,3:] |
|
|
|
depth[depth<near_distance] = 0 |
|
|
|
return depth |
|
|
|
|
|
def get_intr(target_im): |
|
h, w = target_im.shape[:2] |
|
|
|
fx = fy = 1422.222 |
|
res_raw = 1024 |
|
f_x = f_y = fx * h / res_raw |
|
K = torch.tensor([f_x, 0, w / 2, 0, f_y, h / 2, 0, 0, 1]).reshape(3, 3) |
|
|
|
return K |
|
|
|
|
|
def convert_pose(C2W): |
|
flip_yz = np.eye(4) |
|
flip_yz[1, 1] = -1 |
|
flip_yz[2, 2] = -1 |
|
C2W = np.matmul(C2W, flip_yz) |
|
return torch.from_numpy(C2W) |
|
|
|
|
|
|
|
def read_camera_matrix_single(json_file): |
|
with open(json_file, 'r', encoding='utf8') as reader: |
|
json_content = json.load(reader) |
|
|
|
|
|
camera_matrix = np.eye(4) |
|
camera_matrix[:3, 0] = np.array(json_content['x']) |
|
camera_matrix[:3, 1] = -np.array(json_content['y']) |
|
camera_matrix[:3, 2] = -np.array(json_content['z']) |
|
camera_matrix[:3, 3] = np.array(json_content['origin']) |
|
|
|
|
|
''' |
|
camera_matrix = np.eye(4) |
|
camera_matrix[:3, 0] = np.array(json_content['x']) |
|
camera_matrix[:3, 1] = np.array(json_content['y']) |
|
camera_matrix[:3, 2] = np.array(json_content['z']) |
|
camera_matrix[:3, 3] = np.array(json_content['origin']) |
|
# print(camera_matrix) |
|
''' |
|
|
|
return camera_matrix |
|
|
|
|
|
def read_w2c(camera): |
|
tm = camera |
|
tm = np.asarray(tm) |
|
|
|
cam_pos = tm[:3, 3:] |
|
world2cam = np.zeros_like(tm) |
|
world2cam[:3, :3] = tm[:3,:3].transpose() |
|
world2cam[:3,3:] = -tm[:3,:3].transpose() @ tm[:3,3:] |
|
world2cam[-1, -1] = 1 |
|
|
|
return world2cam, np.linalg.norm(cam_pos, 2 , axis=0) |
|
|
|
|
|
|
|
def get_camera_pos(camera): |
|
tm = camera['transform_matrix'] |
|
tm = np.asarray(tm) |
|
|
|
cam_pos = tm[:3, 3:] |
|
return cam_pos |
|
|
|
|
|
def to_torch_tensor(input): |
|
if isinstance(input, np.ndarray): |
|
input = torch.from_numpy(input) |
|
return input |
|
|
|
|
|
def image_warping_v1(target_img, ref_img, K, c2w_t, c2w_r, target_depth, ref_depth, scale_factor=1.0, device=torch.device("cpu"), save_root=None): |
|
|
|
|
|
target_img = target_img.astype(np.float32) |
|
ref_img = ref_img.astype(np.float32) |
|
target_img = target_img /255. * 2. -1 |
|
ref_img = ref_img / 255. * 2. - 1 |
|
|
|
with torch.no_grad(): |
|
|
|
ref_K = K |
|
|
|
|
|
t_img = to_torch_tensor(target_img).permute(2, 0, 1).unsqueeze(0).float().to(device) |
|
r_img = to_torch_tensor(ref_img).permute(2, 0, 1).unsqueeze(0).float().to(device) |
|
|
|
|
|
|
|
|
|
c2w_t = to_torch_tensor(c2w_t).unsqueeze(0).float().to(device) |
|
c2w_r = to_torch_tensor(c2w_r).unsqueeze(0).float().to(device) |
|
target_depth = to_torch_tensor(target_depth).permute(2, 0, 1).float().to(device) |
|
ref_depth = to_torch_tensor(ref_depth).permute(2, 0, 1).float().to(device) |
|
|
|
K = to_torch_tensor(K).unsqueeze(0).float().to(device) |
|
ref_K = to_torch_tensor(ref_K).unsqueeze(0).float().to(device) |
|
|
|
t_pose = {"intr": K, "extr": torch.inverse(c2w_t)} |
|
r_pose = {"intr": K, "extr": torch.inverse(c2w_r)} |
|
|
|
|
|
ref_img_warped, ref_depth_warpped = image_warpping_reproj(depth_ref=ref_depth, |
|
depth_src=None, |
|
ref_pose=r_pose, |
|
src_pose=t_pose, |
|
img_ref=r_img) |
|
|
|
|
|
|
|
|
|
if save_root is not None: |
|
os.makedirs(save_root, exist_ok=True) |
|
|
|
|
|
img_w = ref_img_warped[0].permute(1,2,0).detach().cpu().numpy() |
|
t_img = t_img[0].permute(1,2,0).detach().cpu().numpy() |
|
r_img = r_img[0].permute(1,2,0).detach().cpu().numpy() |
|
|
|
|
|
img_blend = 0.5 * t_img + 0.5 * img_w |
|
|
|
save_name = os.path.join(save_root, f"blend.jpg") |
|
img_vis = np.hstack([t_img, img_w, r_img, img_blend, 0.5 * t_img + 0.5 * r_img]) |
|
|
|
cv2.imwrite(save_name, np.clip((img_vis + 1) / 2 * 255, 0, 255).astype(np.uint8)[:, :, (2, 1, 0)]) |
|
|
|
return ref_img_warped |
|
|
|
|
|
|
|
def zbuff_check(xyz,bs,height,width): |
|
|
|
p_xyz, depth = xyz[:, :2] / (xyz[:, 2:3].clamp(min=1e-10)),xyz[:,2:3] |
|
x_src = p_xyz[:, 0].view([bs, 1, -1 ]).round() |
|
y_src = p_xyz[:, 1].view([bs, 1, -1]).round() |
|
|
|
valid_mask_0= torch.logical_and(x_src<width, y_src<height).view(-1) |
|
valid_mask_1= torch.logical_and(x_src>=0, y_src>=0).view(-1) |
|
valid_mask = torch.logical_and(valid_mask_0, valid_mask_1) |
|
|
|
|
|
x_src = x_src.clamp(0, width - 1).long() |
|
y_src = y_src.clamp(0, height - 1).long() |
|
|
|
buffs= -torch.ones((height,width)).to(xyz) |
|
z_buffs= -torch.ones((height,width)).to(xyz) |
|
|
|
|
|
|
|
src_x = x_src.view(-1).numpy().astype(np.int32) |
|
src_y = y_src.view(-1).numpy().astype(np.int32) |
|
depth = depth.view(-1).numpy().astype(np.float32) |
|
data_size = c_int(src_x.shape[0]) |
|
valid_mask = valid_mask.numpy() |
|
|
|
buffs= buffs.numpy().astype(np.float32) |
|
z_buffs= z_buffs.numpy().astype(np.float32) |
|
|
|
h, w = z_buffs.shape |
|
|
|
|
|
|
|
quick_zbuff.zbuff_check(src_x.ctypes.data_as(c_void_p), src_y.ctypes.data_as(c_void_p), \ |
|
depth.ctypes.data_as(c_void_p), data_size, valid_mask.ctypes.data_as(c_void_p), buffs.ctypes.data_as(c_void_p),\ |
|
z_buffs.ctypes.data_as(c_void_p), h, w) |
|
|
|
|
|
|
|
''' |
|
for idx, (x, y, z) in enumerate(zip(x_src.view(-1),y_src.view(-1), depth.view(-1))): |
|
if not valid_mask[idx]: |
|
continue |
|
if buffs[y,x] ==-1: |
|
buffs[y,x] =idx |
|
z_buffs[y,x] =z |
|
else: |
|
if z_buffs[y,x] > z: |
|
buffs[y,x] =idx |
|
z_buffs[y,x] =z |
|
''' |
|
|
|
valid_buffs = torch.from_numpy(buffs[buffs!=-1]) |
|
|
|
|
|
|
|
|
|
|
|
return valid_buffs.long() |
|
|
|
|
|
|
|
|
|
|
|
def reproject_with_depth_batch(depth_ref, depth_src, ref_pose, src_pose, xy_coords, img_ref): |
|
"""project the reference point cloud into the source view, then project back""" |
|
|
|
img_tgt = -torch.ones_like(img_ref) |
|
|
|
depth_tgt = 5 * torch.ones_like(img_ref) |
|
|
|
intrinsics_ref, extrinsics_ref = ref_pose["intr"], ref_pose["extr"] |
|
intrinsics_src, extrinsics_src = src_pose["intr"], src_pose["extr"] |
|
|
|
|
|
|
|
bs, height, width = depth_ref.shape[:3] |
|
|
|
|
|
x_ref, y_ref = xy_coords |
|
x_ref, y_ref = x_ref.view([bs, 1, -1]), y_ref.view([bs, 1, -1]) |
|
ref_indx = (y_ref * height+ x_ref).long().squeeze() |
|
|
|
depth_mask = torch.logical_not(((depth_ref.view([bs, 1, -1]))[..., ref_indx] ==5.))[0,0] |
|
x_ref = x_ref[..., depth_mask] |
|
y_ref = y_ref[..., depth_mask] |
|
|
|
depth_ref = depth_ref.view(bs, 1, -1) |
|
depth_ref = depth_ref[..., depth_mask] |
|
|
|
|
|
xyz_ref = torch.matmul(torch.inverse(intrinsics_ref), torch.cat([x_ref, y_ref, torch.ones_like(x_ref)], dim=1) * depth_ref.view([bs, 1, -1])) |
|
|
|
xyz_src = torch.matmul(torch.matmul(extrinsics_src, torch.inverse(extrinsics_ref)), \ |
|
torch.cat([xyz_ref, torch.ones_like(x_ref)], dim=1))[:, :3] |
|
|
|
|
|
|
|
k_xyz_src = torch.matmul(intrinsics_src, xyz_src) |
|
zbuff_idx = zbuff_check(k_xyz_src, bs, height, width) |
|
x_ref = x_ref[..., zbuff_idx] |
|
y_ref = y_ref[..., zbuff_idx] |
|
depth_ref= depth_ref[..., zbuff_idx] |
|
k_xyz_src = k_xyz_src[...,zbuff_idx] |
|
xy_src = k_xyz_src[:, :2] / (k_xyz_src[:, 2:3].clamp(min=1e-10)) |
|
src_depth = k_xyz_src[:, 2:3] |
|
|
|
|
|
x_src = xy_src[:, 0].view([bs, 1, -1 ]).round() |
|
y_src = xy_src[:, 1].view([bs, 1, -1]).round() |
|
|
|
|
|
|
|
|
|
x_src = x_src.clamp(0, width - 1).long() |
|
y_src = y_src.clamp(0, height - 1).long() |
|
|
|
img_tgt_tmp = img_tgt.permute(0, 2, 3, 1) |
|
depth_tgt_tmp = depth_tgt.permute(0, 2, 3, 1)[...,0] |
|
img_ref_tmp = img_ref.permute(0, 2, 3, 1) |
|
|
|
|
|
B, _, H, W = img_ref.shape |
|
bs_tensor = torch.arange(B, dtype=x_src.dtype, device=x_src.device).unsqueeze(1).unsqueeze(1).repeat(1, H, W) |
|
|
|
bs_tensor = torch.zeros_like(x_ref).long() |
|
x_ref = x_ref.long() |
|
y_ref = y_ref.long() |
|
|
|
img_tgt_tmp[bs_tensor, y_src, x_src] = img_ref_tmp[bs_tensor, y_ref, x_ref] |
|
img_tgt = img_tgt_tmp.permute(0, 3, 1, 2) |
|
|
|
depth_tgt_tmp[bs_tensor,y_src,x_src]=src_depth |
|
depth_tgt = depth_tgt_tmp.unsqueeze(1) |
|
|
|
|
|
|
|
return img_tgt, depth_tgt |
|
|
|
|
|
def image_warpping_reproj(depth_ref, depth_src, ref_pose, src_pose, |
|
img_ref, mask_ref=None, |
|
thres_p_dist=15, thres_d_diff=0.1, device=torch.device("cpu"), bg_color=1.0): |
|
"""check geometric consistency |
|
consider two factor: |
|
1.disparity < 1 |
|
2.relative depth differ ratio < 0.001 |
|
# warp img_src to ref |
|
|
|
|
|
depth_ref: depth reference |
|
""" |
|
|
|
|
|
x_ref, y_ref = get_coordinate_xy(depth_ref.shape, device=device) |
|
xy_coords = x_ref, y_ref |
|
|
|
img_ref_warped, depth_ref_warpped = \ |
|
reproject_with_depth_batch(depth_ref, depth_src, ref_pose, src_pose, xy_coords, img_ref) |
|
|
|
img = ((img_ref[0].permute(1,2,0) +1.) /2 * 255) |
|
warp_img = ((img_ref_warped[0].permute(1,2,0) +1.) /2 * 255) |
|
|
|
|
|
|
|
return img_ref_warped, depth_ref_warpped |
|
|
|
|
|
|
|
|
|
|
|
|
|
def warp(img_list, normald_list, json_list, cond_idx, target_idx): |
|
|
|
cond_img = img_list[cond_idx] |
|
target_img = img_list[target_idx] |
|
|
|
|
|
cond_camera_path= json_list[cond_idx] |
|
cond_view_c2w = read_camera_matrix_single(cond_camera_path) |
|
|
|
cond_view_pos = cond_view_c2w[:3, 3:] |
|
cond_world_view_depth = read_dnormal(normald_list[cond_idx], cond_view_pos) |
|
cond_world_view_depth = torch.from_numpy(cond_world_view_depth) |
|
|
|
cond_world_view_depth[cond_world_view_depth==0]=5. |
|
|
|
cond_img = cv2.imread(cond_img) |
|
|
|
|
|
target_camera_path= json_list[target_idx] |
|
target_view_c2w = read_camera_matrix_single(target_camera_path) |
|
target_view_pos = target_view_c2w[:3, 3:] |
|
|
|
target_world_view_depth = read_dnormal(normald_list[target_idx], target_view_pos) |
|
target_world_view_depth = torch.from_numpy(target_world_view_depth) |
|
|
|
target_world_view_depth[target_world_view_depth==0]=5. |
|
|
|
K = get_intr(cond_world_view_depth) |
|
target_img = cv2.imread(target_img) |
|
|
|
|
|
cond_normal_warped = image_warping_v1(target_img, cond_img, |
|
K, |
|
convert_pose(target_view_c2w), |
|
convert_pose(cond_view_c2w), |
|
target_world_view_depth, |
|
cond_world_view_depth, |
|
scale_factor=1.0, device=torch.device("cpu"), save_root='./depth_warpping_exps') |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
img_handler = './campos_512_v4/{:05d}/{:05d}.png' |
|
normald_handler = './campos_512_v4/{:05d}/{:05d}_nd.exr' |
|
json_handler = './campos_512_v4/{:05d}/{:05d}.json' |
|
img_list = [img_handler.format(i,i) for i in range(40)] |
|
normald_list = [normald_handler.format(i,i) for i in range(40)] |
|
json_list = [json_handler.format(i,i) for i in range(40)] |
|
|
|
|
|
warp(img_list, normald_list, json_list, int(sys.argv[1]), int(sys.argv[2])) |
|
|
|
|
|
|