ACCC1380 commited on
Commit
53ac835
·
verified ·
1 Parent(s): 8832fc5

Upload lora-scripts/sd-scripts/networks/lora_fa.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/networks/lora_fa.py ADDED
@@ -0,0 +1,1244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LoRA network module
2
+ # reference:
3
+ # https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
4
+ # https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
5
+
6
+ # temporary implementation of LoRA-FA: https://arxiv.org/abs/2308.03303
7
+ # need to be refactored and merged to lora.py
8
+
9
+ import math
10
+ import os
11
+ from typing import Dict, List, Optional, Tuple, Type, Union
12
+ from diffusers import AutoencoderKL
13
+ from transformers import CLIPTextModel
14
+ import numpy as np
15
+ import torch
16
+ import re
17
+ from library.utils import setup_logging
18
+ setup_logging()
19
+ import logging
20
+ logger = logging.getLogger(__name__)
21
+
22
+ RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
23
+
24
+
25
+ class LoRAModule(torch.nn.Module):
26
+ """
27
+ replaces forward method of the original Linear, instead of replacing the original Linear module.
28
+ """
29
+
30
+ def __init__(
31
+ self,
32
+ lora_name,
33
+ org_module: torch.nn.Module,
34
+ multiplier=1.0,
35
+ lora_dim=4,
36
+ alpha=1,
37
+ dropout=None,
38
+ rank_dropout=None,
39
+ module_dropout=None,
40
+ ):
41
+ """if alpha == 0 or None, alpha is rank (no scaling)."""
42
+ super().__init__()
43
+ self.lora_name = lora_name
44
+
45
+ if org_module.__class__.__name__ == "Conv2d":
46
+ in_dim = org_module.in_channels
47
+ out_dim = org_module.out_channels
48
+ else:
49
+ in_dim = org_module.in_features
50
+ out_dim = org_module.out_features
51
+
52
+ # if limit_rank:
53
+ # self.lora_dim = min(lora_dim, in_dim, out_dim)
54
+ # if self.lora_dim != lora_dim:
55
+ # logger.info(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
56
+ # else:
57
+ self.lora_dim = lora_dim
58
+
59
+ if org_module.__class__.__name__ == "Conv2d":
60
+ kernel_size = org_module.kernel_size
61
+ stride = org_module.stride
62
+ padding = org_module.padding
63
+ self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
64
+ self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
65
+ else:
66
+ self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
67
+ self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
68
+
69
+ if type(alpha) == torch.Tensor:
70
+ alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
71
+ alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
72
+ self.scale = alpha / self.lora_dim
73
+ self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
74
+
75
+ # # same as microsoft's
76
+ # torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
77
+
78
+ # according to the paper, initialize LoRA-A (down) as normal distribution
79
+ torch.nn.init.normal_(self.lora_down.weight, std=math.sqrt(2.0 / (in_dim + self.lora_dim)))
80
+
81
+ torch.nn.init.zeros_(self.lora_up.weight)
82
+
83
+ self.multiplier = multiplier
84
+ self.org_module = org_module # remove in applying
85
+ self.dropout = dropout
86
+ self.rank_dropout = rank_dropout
87
+ self.module_dropout = module_dropout
88
+
89
+ def get_trainable_params(self):
90
+ params = self.named_parameters()
91
+ trainable_params = []
92
+ for param in params:
93
+ if param[0] == "lora_up.weight": # up only
94
+ trainable_params.append(param[1])
95
+ return trainable_params
96
+
97
+ def requires_grad_(self, requires_grad: bool = True):
98
+ self.lora_up.requires_grad_(requires_grad)
99
+ self.lora_down.requires_grad_(False)
100
+ return self
101
+
102
+ def apply_to(self):
103
+ self.org_forward = self.org_module.forward
104
+ self.org_module.forward = self.forward
105
+ del self.org_module
106
+
107
+ def forward(self, x):
108
+ org_forwarded = self.org_forward(x)
109
+
110
+ # module dropout
111
+ if self.module_dropout is not None and self.training:
112
+ if torch.rand(1) < self.module_dropout:
113
+ return org_forwarded
114
+
115
+ lx = self.lora_down(x)
116
+
117
+ # normal dropout
118
+ if self.dropout is not None and self.training:
119
+ lx = torch.nn.functional.dropout(lx, p=self.dropout)
120
+
121
+ # rank dropout
122
+ if self.rank_dropout is not None and self.training:
123
+ mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
124
+ if len(lx.size()) == 3:
125
+ mask = mask.unsqueeze(1) # for Text Encoder
126
+ elif len(lx.size()) == 4:
127
+ mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
128
+ lx = lx * mask
129
+
130
+ # scaling for rank dropout: treat as if the rank is changed
131
+ # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
132
+ scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
133
+ else:
134
+ scale = self.scale
135
+
136
+ lx = self.lora_up(lx)
137
+
138
+ return org_forwarded + lx * self.multiplier * scale
139
+
140
+
141
+ class LoRAInfModule(LoRAModule):
142
+ def __init__(
143
+ self,
144
+ lora_name,
145
+ org_module: torch.nn.Module,
146
+ multiplier=1.0,
147
+ lora_dim=4,
148
+ alpha=1,
149
+ **kwargs,
150
+ ):
151
+ # no dropout for inference
152
+ super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
153
+
154
+ self.org_module_ref = [org_module] # 後から参照できるように
155
+ self.enabled = True
156
+
157
+ # check regional or not by lora_name
158
+ self.text_encoder = False
159
+ if lora_name.startswith("lora_te_"):
160
+ self.regional = False
161
+ self.use_sub_prompt = True
162
+ self.text_encoder = True
163
+ elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name:
164
+ self.regional = False
165
+ self.use_sub_prompt = True
166
+ elif "time_emb" in lora_name:
167
+ self.regional = False
168
+ self.use_sub_prompt = False
169
+ else:
170
+ self.regional = True
171
+ self.use_sub_prompt = False
172
+
173
+ self.network: LoRANetwork = None
174
+
175
+ def set_network(self, network):
176
+ self.network = network
177
+
178
+ # freezeしてマージする
179
+ def merge_to(self, sd, dtype, device):
180
+ # get up/down weight
181
+ up_weight = sd["lora_up.weight"].to(torch.float).to(device)
182
+ down_weight = sd["lora_down.weight"].to(torch.float).to(device)
183
+
184
+ # extract weight from org_module
185
+ org_sd = self.org_module.state_dict()
186
+ weight = org_sd["weight"].to(torch.float)
187
+
188
+ # merge weight
189
+ if len(weight.size()) == 2:
190
+ # linear
191
+ weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
192
+ elif down_weight.size()[2:4] == (1, 1):
193
+ # conv2d 1x1
194
+ weight = (
195
+ weight
196
+ + self.multiplier
197
+ * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
198
+ * self.scale
199
+ )
200
+ else:
201
+ # conv2d 3x3
202
+ conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
203
+ # logger.info(conved.size(), weight.size(), module.stride, module.padding)
204
+ weight = weight + self.multiplier * conved * self.scale
205
+
206
+ # set weight to org_module
207
+ org_sd["weight"] = weight.to(dtype)
208
+ self.org_module.load_state_dict(org_sd)
209
+
210
+ # 復元できるマージのため、このモジュールのweightを返す
211
+ def get_weight(self, multiplier=None):
212
+ if multiplier is None:
213
+ multiplier = self.multiplier
214
+
215
+ # get up/down weight from module
216
+ up_weight = self.lora_up.weight.to(torch.float)
217
+ down_weight = self.lora_down.weight.to(torch.float)
218
+
219
+ # pre-calculated weight
220
+ if len(down_weight.size()) == 2:
221
+ # linear
222
+ weight = self.multiplier * (up_weight @ down_weight) * self.scale
223
+ elif down_weight.size()[2:4] == (1, 1):
224
+ # conv2d 1x1
225
+ weight = (
226
+ self.multiplier
227
+ * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
228
+ * self.scale
229
+ )
230
+ else:
231
+ # conv2d 3x3
232
+ conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
233
+ weight = self.multiplier * conved * self.scale
234
+
235
+ return weight
236
+
237
+ def set_region(self, region):
238
+ self.region = region
239
+ self.region_mask = None
240
+
241
+ def default_forward(self, x):
242
+ # logger.info("default_forward", self.lora_name, x.size())
243
+ return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
244
+
245
+ def forward(self, x):
246
+ if not self.enabled:
247
+ return self.org_forward(x)
248
+
249
+ if self.network is None or self.network.sub_prompt_index is None:
250
+ return self.default_forward(x)
251
+ if not self.regional and not self.use_sub_prompt:
252
+ return self.default_forward(x)
253
+
254
+ if self.regional:
255
+ return self.regional_forward(x)
256
+ else:
257
+ return self.sub_prompt_forward(x)
258
+
259
+ def get_mask_for_x(self, x):
260
+ # calculate size from shape of x
261
+ if len(x.size()) == 4:
262
+ h, w = x.size()[2:4]
263
+ area = h * w
264
+ else:
265
+ area = x.size()[1]
266
+
267
+ mask = self.network.mask_dic[area]
268
+ if mask is None:
269
+ raise ValueError(f"mask is None for resolution {area}")
270
+ if len(x.size()) != 4:
271
+ mask = torch.reshape(mask, (1, -1, 1))
272
+ return mask
273
+
274
+ def regional_forward(self, x):
275
+ if "attn2_to_out" in self.lora_name:
276
+ return self.to_out_forward(x)
277
+
278
+ if self.network.mask_dic is None: # sub_prompt_index >= 3
279
+ return self.default_forward(x)
280
+
281
+ # apply mask for LoRA result
282
+ lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
283
+ mask = self.get_mask_for_x(lx)
284
+ # logger.info("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size())
285
+ lx = lx * mask
286
+
287
+ x = self.org_forward(x)
288
+ x = x + lx
289
+
290
+ if "attn2_to_q" in self.lora_name and self.network.is_last_network:
291
+ x = self.postp_to_q(x)
292
+
293
+ return x
294
+
295
+ def postp_to_q(self, x):
296
+ # repeat x to num_sub_prompts
297
+ has_real_uncond = x.size()[0] // self.network.batch_size == 3
298
+ qc = self.network.batch_size # uncond
299
+ qc += self.network.batch_size * self.network.num_sub_prompts # cond
300
+ if has_real_uncond:
301
+ qc += self.network.batch_size # real_uncond
302
+
303
+ query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype)
304
+ query[: self.network.batch_size] = x[: self.network.batch_size]
305
+
306
+ for i in range(self.network.batch_size):
307
+ qi = self.network.batch_size + i * self.network.num_sub_prompts
308
+ query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i]
309
+
310
+ if has_real_uncond:
311
+ query[-self.network.batch_size :] = x[-self.network.batch_size :]
312
+
313
+ # logger.info("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts)
314
+ return query
315
+
316
+ def sub_prompt_forward(self, x):
317
+ if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA
318
+ return self.org_forward(x)
319
+
320
+ emb_idx = self.network.sub_prompt_index
321
+ if not self.text_encoder:
322
+ emb_idx += self.network.batch_size
323
+
324
+ # apply sub prompt of X
325
+ lx = x[emb_idx :: self.network.num_sub_prompts]
326
+ lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale
327
+
328
+ # logger.info("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx)
329
+
330
+ x = self.org_forward(x)
331
+ x[emb_idx :: self.network.num_sub_prompts] += lx
332
+
333
+ return x
334
+
335
+ def to_out_forward(self, x):
336
+ # logger.info("to_out_forward", self.lora_name, x.size(), self.network.is_last_network)
337
+
338
+ if self.network.is_last_network:
339
+ masks = [None] * self.network.num_sub_prompts
340
+ self.network.shared[self.lora_name] = (None, masks)
341
+ else:
342
+ lx, masks = self.network.shared[self.lora_name]
343
+
344
+ # call own LoRA
345
+ x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts]
346
+ lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale
347
+
348
+ if self.network.is_last_network:
349
+ lx = torch.zeros(
350
+ (self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype
351
+ )
352
+ self.network.shared[self.lora_name] = (lx, masks)
353
+
354
+ # logger.info("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts)
355
+ lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1
356
+ masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1)
357
+
358
+ # if not last network, return x and masks
359
+ x = self.org_forward(x)
360
+ if not self.network.is_last_network:
361
+ return x
362
+
363
+ lx, masks = self.network.shared.pop(self.lora_name)
364
+
365
+ # if last network, combine separated x with mask weighted sum
366
+ has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2
367
+
368
+ out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype)
369
+ out[: self.network.batch_size] = x[: self.network.batch_size] # uncond
370
+ if has_real_uncond:
371
+ out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond
372
+
373
+ # logger.info("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts)
374
+ # for i in range(len(masks)):
375
+ # if masks[i] is None:
376
+ # masks[i] = torch.zeros_like(masks[-1])
377
+
378
+ mask = torch.cat(masks)
379
+ mask_sum = torch.sum(mask, dim=0) + 1e-4
380
+ for i in range(self.network.batch_size):
381
+ # 1枚の画像ごとに処理する
382
+ lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts]
383
+ lx1 = lx1 * mask
384
+ lx1 = torch.sum(lx1, dim=0)
385
+
386
+ xi = self.network.batch_size + i * self.network.num_sub_prompts
387
+ x1 = x[xi : xi + self.network.num_sub_prompts]
388
+ x1 = x1 * mask
389
+ x1 = torch.sum(x1, dim=0)
390
+ x1 = x1 / mask_sum
391
+
392
+ x1 = x1 + lx1
393
+ out[self.network.batch_size + i] = x1
394
+
395
+ # logger.info("to_out_forward", x.size(), out.size(), has_real_uncond)
396
+ return out
397
+
398
+
399
+ def parse_block_lr_kwargs(nw_kwargs):
400
+ down_lr_weight = nw_kwargs.get("down_lr_weight", None)
401
+ mid_lr_weight = nw_kwargs.get("mid_lr_weight", None)
402
+ up_lr_weight = nw_kwargs.get("up_lr_weight", None)
403
+
404
+ # 以上のいずれにも設定がない場合は無効としてNoneを返す
405
+ if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None:
406
+ return None, None, None
407
+
408
+ # extract learning rate weight for each block
409
+ if down_lr_weight is not None:
410
+ # if some parameters are not set, use zero
411
+ if "," in down_lr_weight:
412
+ down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")]
413
+
414
+ if mid_lr_weight is not None:
415
+ mid_lr_weight = float(mid_lr_weight)
416
+
417
+ if up_lr_weight is not None:
418
+ if "," in up_lr_weight:
419
+ up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")]
420
+
421
+ down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight(
422
+ down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0))
423
+ )
424
+
425
+ return down_lr_weight, mid_lr_weight, up_lr_weight
426
+
427
+
428
+ def create_network(
429
+ multiplier: float,
430
+ network_dim: Optional[int],
431
+ network_alpha: Optional[float],
432
+ vae: AutoencoderKL,
433
+ text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
434
+ unet,
435
+ neuron_dropout: Optional[float] = None,
436
+ **kwargs,
437
+ ):
438
+ if network_dim is None:
439
+ network_dim = 4 # default
440
+ if network_alpha is None:
441
+ network_alpha = 1.0
442
+
443
+ # extract dim/alpha for conv2d, and block dim
444
+ conv_dim = kwargs.get("conv_dim", None)
445
+ conv_alpha = kwargs.get("conv_alpha", None)
446
+ if conv_dim is not None:
447
+ conv_dim = int(conv_dim)
448
+ if conv_alpha is None:
449
+ conv_alpha = 1.0
450
+ else:
451
+ conv_alpha = float(conv_alpha)
452
+
453
+ # block dim/alpha/lr
454
+ block_dims = kwargs.get("block_dims", None)
455
+ down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
456
+
457
+ # 以上のいずれかに指定があればblockごとのdim(rank)を有効にする
458
+ if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None:
459
+ block_alphas = kwargs.get("block_alphas", None)
460
+ conv_block_dims = kwargs.get("conv_block_dims", None)
461
+ conv_block_alphas = kwargs.get("conv_block_alphas", None)
462
+
463
+ block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas(
464
+ block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
465
+ )
466
+
467
+ # remove block dim/alpha without learning rate
468
+ block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas(
469
+ block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
470
+ )
471
+
472
+ else:
473
+ block_alphas = None
474
+ conv_block_dims = None
475
+ conv_block_alphas = None
476
+
477
+ # rank/module dropout
478
+ rank_dropout = kwargs.get("rank_dropout", None)
479
+ if rank_dropout is not None:
480
+ rank_dropout = float(rank_dropout)
481
+ module_dropout = kwargs.get("module_dropout", None)
482
+ if module_dropout is not None:
483
+ module_dropout = float(module_dropout)
484
+
485
+ # すごく引数が多いな ( ^ω^)・・・
486
+ network = LoRANetwork(
487
+ text_encoder,
488
+ unet,
489
+ multiplier=multiplier,
490
+ lora_dim=network_dim,
491
+ alpha=network_alpha,
492
+ dropout=neuron_dropout,
493
+ rank_dropout=rank_dropout,
494
+ module_dropout=module_dropout,
495
+ conv_lora_dim=conv_dim,
496
+ conv_alpha=conv_alpha,
497
+ block_dims=block_dims,
498
+ block_alphas=block_alphas,
499
+ conv_block_dims=conv_block_dims,
500
+ conv_block_alphas=conv_block_alphas,
501
+ varbose=True,
502
+ )
503
+
504
+ if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
505
+ network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
506
+
507
+ return network
508
+
509
+
510
+ # このメソッドは外部から呼び出される可能性を考慮しておく
511
+ # network_dim, network_alpha にはデフォルト値が入っている。
512
+ # block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている
513
+ # conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている
514
+ def get_block_dims_and_alphas(
515
+ block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
516
+ ):
517
+ num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1
518
+
519
+ def parse_ints(s):
520
+ return [int(i) for i in s.split(",")]
521
+
522
+ def parse_floats(s):
523
+ return [float(i) for i in s.split(",")]
524
+
525
+ # block_dimsとblock_alphasをパースする。必ず値が入る
526
+ if block_dims is not None:
527
+ block_dims = parse_ints(block_dims)
528
+ assert (
529
+ len(block_dims) == num_total_blocks
530
+ ), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください"
531
+ else:
532
+ logger.warning(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります")
533
+ block_dims = [network_dim] * num_total_blocks
534
+
535
+ if block_alphas is not None:
536
+ block_alphas = parse_floats(block_alphas)
537
+ assert (
538
+ len(block_alphas) == num_total_blocks
539
+ ), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください"
540
+ else:
541
+ logger.warning(
542
+ f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります"
543
+ )
544
+ block_alphas = [network_alpha] * num_total_blocks
545
+
546
+ # conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う
547
+ if conv_block_dims is not None:
548
+ conv_block_dims = parse_ints(conv_block_dims)
549
+ assert (
550
+ len(conv_block_dims) == num_total_blocks
551
+ ), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください"
552
+
553
+ if conv_block_alphas is not None:
554
+ conv_block_alphas = parse_floats(conv_block_alphas)
555
+ assert (
556
+ len(conv_block_alphas) == num_total_blocks
557
+ ), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください"
558
+ else:
559
+ if conv_alpha is None:
560
+ conv_alpha = 1.0
561
+ logger.warning(
562
+ f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります"
563
+ )
564
+ conv_block_alphas = [conv_alpha] * num_total_blocks
565
+ else:
566
+ if conv_dim is not None:
567
+ logger.warning(
568
+ f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります"
569
+ )
570
+ conv_block_dims = [conv_dim] * num_total_blocks
571
+ conv_block_alphas = [conv_alpha] * num_total_blocks
572
+ else:
573
+ conv_block_dims = None
574
+ conv_block_alphas = None
575
+
576
+ return block_dims, block_alphas, conv_block_dims, conv_block_alphas
577
+
578
+
579
+ # 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく
580
+ def get_block_lr_weight(
581
+ down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold
582
+ ) -> Tuple[List[float], List[float], List[float]]:
583
+ # パラメータ未指定時は何もせず、今までと同じ動作とする
584
+ if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None:
585
+ return None, None, None
586
+
587
+ max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数
588
+
589
+ def get_list(name_with_suffix) -> List[float]:
590
+ import math
591
+
592
+ tokens = name_with_suffix.split("+")
593
+ name = tokens[0]
594
+ base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0
595
+
596
+ if name == "cosine":
597
+ return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))]
598
+ elif name == "sine":
599
+ return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)]
600
+ elif name == "linear":
601
+ return [i / (max_len - 1) + base_lr for i in range(max_len)]
602
+ elif name == "reverse_linear":
603
+ return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))]
604
+ elif name == "zeros":
605
+ return [0.0 + base_lr] * max_len
606
+ else:
607
+ logger.error(
608
+ "Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros"
609
+ % (name)
610
+ )
611
+ return None
612
+
613
+ if type(down_lr_weight) == str:
614
+ down_lr_weight = get_list(down_lr_weight)
615
+ if type(up_lr_weight) == str:
616
+ up_lr_weight = get_list(up_lr_weight)
617
+
618
+ if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len):
619
+ logger.warning("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len)
620
+ logger.warning("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len)
621
+ up_lr_weight = up_lr_weight[:max_len]
622
+ down_lr_weight = down_lr_weight[:max_len]
623
+
624
+ if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len):
625
+ logger.warning("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len)
626
+ logger.warning("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len)
627
+
628
+ if down_lr_weight != None and len(down_lr_weight) < max_len:
629
+ down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight))
630
+ if up_lr_weight != None and len(up_lr_weight) < max_len:
631
+ up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight))
632
+
633
+ if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None):
634
+ logger.info("apply block learning rate / 階層別学習率を適用します。")
635
+ if down_lr_weight != None:
636
+ down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight]
637
+ logger.info(f"down_lr_weight (shallower -> deeper, 浅い層->深い層): {down_lr_weight}")
638
+ else:
639
+ logger.info("down_lr_weight: all 1.0, すべて1.0")
640
+
641
+ if mid_lr_weight != None:
642
+ mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0
643
+ logger.info(f"mid_lr_weight: {mid_lr_weight}")
644
+ else:
645
+ logger.info("mid_lr_weight: 1.0")
646
+
647
+ if up_lr_weight != None:
648
+ up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight]
649
+ logger.info(f"up_lr_weight (deeper -> shallower, 深い層->浅い層): {up_lr_weight}")
650
+ else:
651
+ logger.info("up_lr_weight: all 1.0, すべて1.0")
652
+
653
+ return down_lr_weight, mid_lr_weight, up_lr_weight
654
+
655
+
656
+ # lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく
657
+ def remove_block_dims_and_alphas(
658
+ block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
659
+ ):
660
+ # set 0 to block dim without learning rate to remove the block
661
+ if down_lr_weight != None:
662
+ for i, lr in enumerate(down_lr_weight):
663
+ if lr == 0:
664
+ block_dims[i] = 0
665
+ if conv_block_dims is not None:
666
+ conv_block_dims[i] = 0
667
+ if mid_lr_weight != None:
668
+ if mid_lr_weight == 0:
669
+ block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
670
+ if conv_block_dims is not None:
671
+ conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
672
+ if up_lr_weight != None:
673
+ for i, lr in enumerate(up_lr_weight):
674
+ if lr == 0:
675
+ block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
676
+ if conv_block_dims is not None:
677
+ conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
678
+
679
+ return block_dims, block_alphas, conv_block_dims, conv_block_alphas
680
+
681
+
682
+ # 外部から呼び出す可能性を考慮しておく
683
+ def get_block_index(lora_name: str) -> int:
684
+ block_idx = -1 # invalid lora name
685
+
686
+ m = RE_UPDOWN.search(lora_name)
687
+ if m:
688
+ g = m.groups()
689
+ i = int(g[1])
690
+ j = int(g[3])
691
+ if g[2] == "resnets":
692
+ idx = 3 * i + j
693
+ elif g[2] == "attentions":
694
+ idx = 3 * i + j
695
+ elif g[2] == "upsamplers" or g[2] == "downsamplers":
696
+ idx = 3 * i + 2
697
+
698
+ if g[0] == "down":
699
+ block_idx = 1 + idx # 0に該当するLoRAは存在しない
700
+ elif g[0] == "up":
701
+ block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx
702
+
703
+ elif "mid_block_" in lora_name:
704
+ block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12
705
+
706
+ return block_idx
707
+
708
+
709
+ # Create network from weights for inference, weights are not loaded here (because can be merged)
710
+ def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
711
+ if weights_sd is None:
712
+ if os.path.splitext(file)[1] == ".safetensors":
713
+ from safetensors.torch import load_file, safe_open
714
+
715
+ weights_sd = load_file(file)
716
+ else:
717
+ weights_sd = torch.load(file, map_location="cpu")
718
+
719
+ # get dim/alpha mapping
720
+ modules_dim = {}
721
+ modules_alpha = {}
722
+ for key, value in weights_sd.items():
723
+ if "." not in key:
724
+ continue
725
+
726
+ lora_name = key.split(".")[0]
727
+ if "alpha" in key:
728
+ modules_alpha[lora_name] = value
729
+ elif "lora_down" in key:
730
+ dim = value.size()[0]
731
+ modules_dim[lora_name] = dim
732
+ # logger.info(lora_name, value.size(), dim)
733
+
734
+ # support old LoRA without alpha
735
+ for key in modules_dim.keys():
736
+ if key not in modules_alpha:
737
+ modules_alpha[key] = modules_dim[key]
738
+
739
+ module_class = LoRAInfModule if for_inference else LoRAModule
740
+
741
+ network = LoRANetwork(
742
+ text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
743
+ )
744
+
745
+ # block lr
746
+ down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
747
+ if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
748
+ network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
749
+
750
+ return network, weights_sd
751
+
752
+
753
+ class LoRANetwork(torch.nn.Module):
754
+ NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
755
+
756
+ UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
757
+ UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
758
+ TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
759
+ LORA_PREFIX_UNET = "lora_unet"
760
+ LORA_PREFIX_TEXT_ENCODER = "lora_te"
761
+
762
+ # SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
763
+ LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
764
+ LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
765
+
766
+ def __init__(
767
+ self,
768
+ text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
769
+ unet,
770
+ multiplier: float = 1.0,
771
+ lora_dim: int = 4,
772
+ alpha: float = 1,
773
+ dropout: Optional[float] = None,
774
+ rank_dropout: Optional[float] = None,
775
+ module_dropout: Optional[float] = None,
776
+ conv_lora_dim: Optional[int] = None,
777
+ conv_alpha: Optional[float] = None,
778
+ block_dims: Optional[List[int]] = None,
779
+ block_alphas: Optional[List[float]] = None,
780
+ conv_block_dims: Optional[List[int]] = None,
781
+ conv_block_alphas: Optional[List[float]] = None,
782
+ modules_dim: Optional[Dict[str, int]] = None,
783
+ modules_alpha: Optional[Dict[str, int]] = None,
784
+ module_class: Type[object] = LoRAModule,
785
+ varbose: Optional[bool] = False,
786
+ ) -> None:
787
+ """
788
+ LoRA network: すごく引数が多いが、パターンは以下の通り
789
+ 1. lora_dimとalphaを指定
790
+ 2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
791
+ 3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
792
+ 4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
793
+ 5. modules_dimとmodules_alphaを指定 (推論用)
794
+ """
795
+ super().__init__()
796
+ self.multiplier = multiplier
797
+
798
+ self.lora_dim = lora_dim
799
+ self.alpha = alpha
800
+ self.conv_lora_dim = conv_lora_dim
801
+ self.conv_alpha = conv_alpha
802
+ self.dropout = dropout
803
+ self.rank_dropout = rank_dropout
804
+ self.module_dropout = module_dropout
805
+
806
+ if modules_dim is not None:
807
+ logger.info(f"create LoRA network from weights")
808
+ elif block_dims is not None:
809
+ logger.info(f"create LoRA network from block_dims")
810
+ logger.info(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
811
+ logger.info(f"block_dims: {block_dims}")
812
+ logger.info(f"block_alphas: {block_alphas}")
813
+ if conv_block_dims is not None:
814
+ logger.info(f"conv_block_dims: {conv_block_dims}")
815
+ logger.info(f"conv_block_alphas: {conv_block_alphas}")
816
+ else:
817
+ logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
818
+ logger.info(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
819
+ if self.conv_lora_dim is not None:
820
+ logger.info(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
821
+
822
+ # create module instances
823
+ def create_modules(
824
+ is_unet: bool,
825
+ text_encoder_idx: Optional[int], # None, 1, 2
826
+ root_module: torch.nn.Module,
827
+ target_replace_modules: List[torch.nn.Module],
828
+ ) -> List[LoRAModule]:
829
+ prefix = (
830
+ self.LORA_PREFIX_UNET
831
+ if is_unet
832
+ else (
833
+ self.LORA_PREFIX_TEXT_ENCODER
834
+ if text_encoder_idx is None
835
+ else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
836
+ )
837
+ )
838
+ loras = []
839
+ skipped = []
840
+ for name, module in root_module.named_modules():
841
+ if module.__class__.__name__ in target_replace_modules:
842
+ for child_name, child_module in module.named_modules():
843
+ is_linear = child_module.__class__.__name__ == "Linear"
844
+ is_conv2d = child_module.__class__.__name__ == "Conv2d"
845
+ is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
846
+
847
+ if is_linear or is_conv2d:
848
+ lora_name = prefix + "." + name + "." + child_name
849
+ lora_name = lora_name.replace(".", "_")
850
+
851
+ dim = None
852
+ alpha = None
853
+
854
+ if modules_dim is not None:
855
+ # モジュール指定あり
856
+ if lora_name in modules_dim:
857
+ dim = modules_dim[lora_name]
858
+ alpha = modules_alpha[lora_name]
859
+ elif is_unet and block_dims is not None:
860
+ # U-Netでblock_dims指定あり
861
+ block_idx = get_block_index(lora_name)
862
+ if is_linear or is_conv2d_1x1:
863
+ dim = block_dims[block_idx]
864
+ alpha = block_alphas[block_idx]
865
+ elif conv_block_dims is not None:
866
+ dim = conv_block_dims[block_idx]
867
+ alpha = conv_block_alphas[block_idx]
868
+ else:
869
+ # 通常、すべて対象とする
870
+ if is_linear or is_conv2d_1x1:
871
+ dim = self.lora_dim
872
+ alpha = self.alpha
873
+ elif self.conv_lora_dim is not None:
874
+ dim = self.conv_lora_dim
875
+ alpha = self.conv_alpha
876
+
877
+ if dim is None or dim == 0:
878
+ # skipした情報を出力
879
+ if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None):
880
+ skipped.append(lora_name)
881
+ continue
882
+
883
+ lora = module_class(
884
+ lora_name,
885
+ child_module,
886
+ self.multiplier,
887
+ dim,
888
+ alpha,
889
+ dropout=dropout,
890
+ rank_dropout=rank_dropout,
891
+ module_dropout=module_dropout,
892
+ )
893
+ loras.append(lora)
894
+ return loras, skipped
895
+
896
+ text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
897
+
898
+ # create LoRA for text encoder
899
+ # 毎回すべてのモジュールを作るのは無駄なので要検討
900
+ self.text_encoder_loras = []
901
+ skipped_te = []
902
+ for i, text_encoder in enumerate(text_encoders):
903
+ if len(text_encoders) > 1:
904
+ index = i + 1
905
+ logger.info(f"create LoRA for Text Encoder {index}:")
906
+ else:
907
+ index = None
908
+ logger.info(f"create LoRA for Text Encoder:")
909
+
910
+ text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
911
+ self.text_encoder_loras.extend(text_encoder_loras)
912
+ skipped_te += skipped
913
+ logger.info(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
914
+
915
+ # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
916
+ target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
917
+ if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
918
+ target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
919
+
920
+ self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
921
+ logger.info(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
922
+
923
+ skipped = skipped_te + skipped_un
924
+ if varbose and len(skipped) > 0:
925
+ logger.warning(
926
+ f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
927
+ )
928
+ for name in skipped:
929
+ logger.info(f"\t{name}")
930
+
931
+ self.up_lr_weight: List[float] = None
932
+ self.down_lr_weight: List[float] = None
933
+ self.mid_lr_weight: float = None
934
+ self.block_lr = False
935
+
936
+ # assertion
937
+ names = set()
938
+ for lora in self.text_encoder_loras + self.unet_loras:
939
+ assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
940
+ names.add(lora.lora_name)
941
+
942
+ def set_multiplier(self, multiplier):
943
+ self.multiplier = multiplier
944
+ for lora in self.text_encoder_loras + self.unet_loras:
945
+ lora.multiplier = self.multiplier
946
+
947
+ def load_weights(self, file):
948
+ if os.path.splitext(file)[1] == ".safetensors":
949
+ from safetensors.torch import load_file
950
+
951
+ weights_sd = load_file(file)
952
+ else:
953
+ weights_sd = torch.load(file, map_location="cpu")
954
+
955
+ info = self.load_state_dict(weights_sd, False)
956
+ return info
957
+
958
+ def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
959
+ if apply_text_encoder:
960
+ logger.info("enable LoRA for text encoder")
961
+ else:
962
+ self.text_encoder_loras = []
963
+
964
+ if apply_unet:
965
+ logger.info("enable LoRA for U-Net")
966
+ else:
967
+ self.unet_loras = []
968
+
969
+ for lora in self.text_encoder_loras + self.unet_loras:
970
+ lora.apply_to()
971
+ self.add_module(lora.lora_name, lora)
972
+
973
+ # マージできるかどうかを返す
974
+ def is_mergeable(self):
975
+ return True
976
+
977
+ # TODO refactor to common function with apply_to
978
+ def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
979
+ apply_text_encoder = apply_unet = False
980
+ for key in weights_sd.keys():
981
+ if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
982
+ apply_text_encoder = True
983
+ elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
984
+ apply_unet = True
985
+
986
+ if apply_text_encoder:
987
+ logger.info("enable LoRA for text encoder")
988
+ else:
989
+ self.text_encoder_loras = []
990
+
991
+ if apply_unet:
992
+ logger.info("enable LoRA for U-Net")
993
+ else:
994
+ self.unet_loras = []
995
+
996
+ for lora in self.text_encoder_loras + self.unet_loras:
997
+ sd_for_lora = {}
998
+ for key in weights_sd.keys():
999
+ if key.startswith(lora.lora_name):
1000
+ sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
1001
+ lora.merge_to(sd_for_lora, dtype, device)
1002
+
1003
+ logger.info(f"weights are merged")
1004
+
1005
+ # 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない
1006
+ def set_block_lr_weight(
1007
+ self,
1008
+ up_lr_weight: List[float] = None,
1009
+ mid_lr_weight: float = None,
1010
+ down_lr_weight: List[float] = None,
1011
+ ):
1012
+ self.block_lr = True
1013
+ self.down_lr_weight = down_lr_weight
1014
+ self.mid_lr_weight = mid_lr_weight
1015
+ self.up_lr_weight = up_lr_weight
1016
+
1017
+ def get_lr_weight(self, lora: LoRAModule) -> float:
1018
+ lr_weight = 1.0
1019
+ block_idx = get_block_index(lora.lora_name)
1020
+ if block_idx < 0:
1021
+ return lr_weight
1022
+
1023
+ if block_idx < LoRANetwork.NUM_OF_BLOCKS:
1024
+ if self.down_lr_weight != None:
1025
+ lr_weight = self.down_lr_weight[block_idx]
1026
+ elif block_idx == LoRANetwork.NUM_OF_BLOCKS:
1027
+ if self.mid_lr_weight != None:
1028
+ lr_weight = self.mid_lr_weight
1029
+ elif block_idx > LoRANetwork.NUM_OF_BLOCKS:
1030
+ if self.up_lr_weight != None:
1031
+ lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1]
1032
+
1033
+ return lr_weight
1034
+
1035
+ # 二つのText Encoderに別々の学習率を設定できるようにするといいかも
1036
+ def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
1037
+ self.requires_grad_(True)
1038
+ all_params = []
1039
+
1040
+ def enumerate_params(loras: List[LoRAModule]):
1041
+ params = []
1042
+ for lora in loras:
1043
+ # params.extend(lora.parameters())
1044
+ params.extend(lora.get_trainable_params())
1045
+ return params
1046
+
1047
+ if self.text_encoder_loras:
1048
+ param_data = {"params": enumerate_params(self.text_encoder_loras)}
1049
+ if text_encoder_lr is not None:
1050
+ param_data["lr"] = text_encoder_lr
1051
+ all_params.append(param_data)
1052
+
1053
+ if self.unet_loras:
1054
+ if self.block_lr:
1055
+ # 学習率のグラフをblockごとにしたいので、blockごとにloraを分類
1056
+ block_idx_to_lora = {}
1057
+ for lora in self.unet_loras:
1058
+ idx = get_block_index(lora.lora_name)
1059
+ if idx not in block_idx_to_lora:
1060
+ block_idx_to_lora[idx] = []
1061
+ block_idx_to_lora[idx].append(lora)
1062
+
1063
+ # blockごとにパラメータを設定する
1064
+ for idx, block_loras in block_idx_to_lora.items():
1065
+ param_data = {"params": enumerate_params(block_loras)}
1066
+
1067
+ if unet_lr is not None:
1068
+ param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0])
1069
+ elif default_lr is not None:
1070
+ param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0])
1071
+ if ("lr" in param_data) and (param_data["lr"] == 0):
1072
+ continue
1073
+ all_params.append(param_data)
1074
+
1075
+ else:
1076
+ param_data = {"params": enumerate_params(self.unet_loras)}
1077
+ if unet_lr is not None:
1078
+ param_data["lr"] = unet_lr
1079
+ all_params.append(param_data)
1080
+
1081
+ return all_params
1082
+
1083
+ def enable_gradient_checkpointing(self):
1084
+ # not supported
1085
+ pass
1086
+
1087
+ def prepare_grad_etc(self, text_encoder, unet):
1088
+ self.requires_grad_(True)
1089
+
1090
+ def on_epoch_start(self, text_encoder, unet):
1091
+ self.train()
1092
+
1093
+ def get_trainable_params(self):
1094
+ return self.parameters()
1095
+
1096
+ def save_weights(self, file, dtype, metadata):
1097
+ if metadata is not None and len(metadata) == 0:
1098
+ metadata = None
1099
+
1100
+ state_dict = self.state_dict()
1101
+
1102
+ if dtype is not None:
1103
+ for key in list(state_dict.keys()):
1104
+ v = state_dict[key]
1105
+ v = v.detach().clone().to("cpu").to(dtype)
1106
+ state_dict[key] = v
1107
+
1108
+ if os.path.splitext(file)[1] == ".safetensors":
1109
+ from safetensors.torch import save_file
1110
+ from library import train_util
1111
+
1112
+ # Precalculate model hashes to save time on indexing
1113
+ if metadata is None:
1114
+ metadata = {}
1115
+ model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
1116
+ metadata["sshs_model_hash"] = model_hash
1117
+ metadata["sshs_legacy_hash"] = legacy_hash
1118
+
1119
+ save_file(state_dict, file, metadata)
1120
+ else:
1121
+ torch.save(state_dict, file)
1122
+
1123
+ # mask is a tensor with values from 0 to 1
1124
+ def set_region(self, sub_prompt_index, is_last_network, mask):
1125
+ if mask.max() == 0:
1126
+ mask = torch.ones_like(mask)
1127
+
1128
+ self.mask = mask
1129
+ self.sub_prompt_index = sub_prompt_index
1130
+ self.is_last_network = is_last_network
1131
+
1132
+ for lora in self.text_encoder_loras + self.unet_loras:
1133
+ lora.set_network(self)
1134
+
1135
+ def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
1136
+ self.batch_size = batch_size
1137
+ self.num_sub_prompts = num_sub_prompts
1138
+ self.current_size = (height, width)
1139
+ self.shared = shared
1140
+
1141
+ # create masks
1142
+ mask = self.mask
1143
+ mask_dic = {}
1144
+ mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
1145
+ ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight
1146
+ dtype = ref_weight.dtype
1147
+ device = ref_weight.device
1148
+
1149
+ def resize_add(mh, mw):
1150
+ # logger.info(mh, mw, mh * mw)
1151
+ m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16
1152
+ m = m.to(device, dtype=dtype)
1153
+ mask_dic[mh * mw] = m
1154
+
1155
+ h = height // 8
1156
+ w = width // 8
1157
+ for _ in range(4):
1158
+ resize_add(h, w)
1159
+ if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
1160
+ resize_add(h + h % 2, w + w % 2)
1161
+ h = (h + 1) // 2
1162
+ w = (w + 1) // 2
1163
+
1164
+ self.mask_dic = mask_dic
1165
+
1166
+ def backup_weights(self):
1167
+ # 重みのバックアップを行う
1168
+ loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
1169
+ for lora in loras:
1170
+ org_module = lora.org_module_ref[0]
1171
+ if not hasattr(org_module, "_lora_org_weight"):
1172
+ sd = org_module.state_dict()
1173
+ org_module._lora_org_weight = sd["weight"].detach().clone()
1174
+ org_module._lora_restored = True
1175
+
1176
+ def restore_weights(self):
1177
+ # 重みのリストアを行う
1178
+ loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
1179
+ for lora in loras:
1180
+ org_module = lora.org_module_ref[0]
1181
+ if not org_module._lora_restored:
1182
+ sd = org_module.state_dict()
1183
+ sd["weight"] = org_module._lora_org_weight
1184
+ org_module.load_state_dict(sd)
1185
+ org_module._lora_restored = True
1186
+
1187
+ def pre_calculation(self):
1188
+ # 事前計算を行う
1189
+ loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
1190
+ for lora in loras:
1191
+ org_module = lora.org_module_ref[0]
1192
+ sd = org_module.state_dict()
1193
+
1194
+ org_weight = sd["weight"]
1195
+ lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
1196
+ sd["weight"] = org_weight + lora_weight
1197
+ assert sd["weight"].shape == org_weight.shape
1198
+ org_module.load_state_dict(sd)
1199
+
1200
+ org_module._lora_restored = False
1201
+ lora.enabled = False
1202
+
1203
+ def apply_max_norm_regularization(self, max_norm_value, device):
1204
+ downkeys = []
1205
+ upkeys = []
1206
+ alphakeys = []
1207
+ norms = []
1208
+ keys_scaled = 0
1209
+
1210
+ state_dict = self.state_dict()
1211
+ for key in state_dict.keys():
1212
+ if "lora_down" in key and "weight" in key:
1213
+ downkeys.append(key)
1214
+ upkeys.append(key.replace("lora_down", "lora_up"))
1215
+ alphakeys.append(key.replace("lora_down.weight", "alpha"))
1216
+
1217
+ for i in range(len(downkeys)):
1218
+ down = state_dict[downkeys[i]].to(device)
1219
+ up = state_dict[upkeys[i]].to(device)
1220
+ alpha = state_dict[alphakeys[i]].to(device)
1221
+ dim = down.shape[0]
1222
+ scale = alpha / dim
1223
+
1224
+ if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
1225
+ updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
1226
+ elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
1227
+ updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
1228
+ else:
1229
+ updown = up @ down
1230
+
1231
+ updown *= scale
1232
+
1233
+ norm = updown.norm().clamp(min=max_norm_value / 2)
1234
+ desired = torch.clamp(norm, max=max_norm_value)
1235
+ ratio = desired.cpu() / norm.cpu()
1236
+ sqrt_ratio = ratio**0.5
1237
+ if ratio != 1:
1238
+ keys_scaled += 1
1239
+ state_dict[upkeys[i]] *= sqrt_ratio
1240
+ state_dict[downkeys[i]] *= sqrt_ratio
1241
+ scalednorm = updown.norm() * ratio
1242
+ norms.append(scalednorm.item())
1243
+
1244
+ return keys_scaled, sum(norms) / len(norms), max(norms)