ACCC1380 commited on
Commit
b8fd24c
·
verified ·
1 Parent(s): ee8973c

Upload lora-scripts/train.ipynb with huggingface_hub

Browse files
Files changed (1) hide show
  1. lora-scripts/train.ipynb +99 -0
lora-scripts/train.ipynb ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "pycharm": {
8
+ "name": "#%%\n"
9
+ }
10
+ },
11
+ "outputs": [],
12
+ "source": [
13
+ "# Train data path | 设置训练用模型、图片\n",
14
+ "pretrained_model = \"./sd-models/model.ckpt\" # base model path | 底模路径\n",
15
+ "train_data_dir = \"./train/aki\" # train dataset path | 训练数据集路径\n",
16
+ "\n",
17
+ "# Train related params | 训练相关参数\n",
18
+ "resolution = \"512,512\" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。\n",
19
+ "batch_size = 1 # batch size\n",
20
+ "max_train_epoches = 10 # max train epoches | 最大训练 epoch\n",
21
+ "save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次\n",
22
+ "network_dim = 32 # network dim | 常用 4~128,不是越大越好\n",
23
+ "network_alpha= 32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。\n",
24
+ "clip_skip = 2 # clip skip | 玄学 一般用 2\n",
25
+ "train_unet_only = 0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启\n",
26
+ "train_text_encoder_only = 0 # train Text Encoder only | 仅训练 文本编码器\n",
27
+ "\n",
28
+ "# Learning rate | 学习率\n",
29
+ "lr = \"1e-4\"\n",
30
+ "unet_lr = \"1e-4\"\n",
31
+ "text_encoder_lr = \"1e-5\"\n",
32
+ "lr_scheduler = \"cosine_with_restarts\" # \"linear\", \"cosine\", \"cosine_with_restarts\", \"polynomial\", \"constant\", \"constant_with_warmup\"\n",
33
+ "\n",
34
+ "# Output settings | 输出设置\n",
35
+ "output_name = \"aki\" # output model name | 模型保存名称\n",
36
+ "save_model_as = \"safetensors\" # model save ext | 模型保存格式 ckpt, pt, safetensors"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {
43
+ "pycharm": {
44
+ "name": "#%%\n"
45
+ }
46
+ },
47
+ "outputs": [],
48
+ "source": [
49
+ "!accelerate launch --num_cpu_threads_per_process=8 \"./sd-scripts/train_network.py\" \\\n",
50
+ " --enable_bucket \\\n",
51
+ " --pretrained_model_name_or_path=$pretrained_model \\\n",
52
+ " --train_data_dir=$train_data_dir \\\n",
53
+ " --output_dir=\"./output\" \\\n",
54
+ " --logging_dir=\"./logs\" \\\n",
55
+ " --resolution=$resolution \\\n",
56
+ " --network_module=networks.lora \\\n",
57
+ " --max_train_epochs=$max_train_epoches \\\n",
58
+ " --learning_rate=$lr \\\n",
59
+ " --unet_lr=$unet_lr \\\n",
60
+ " --text_encoder_lr=$text_encoder_lr \\\n",
61
+ " --network_dim=$network_dim \\\n",
62
+ " --network_alpha=$network_alpha \\\n",
63
+ " --output_name=$output_name \\\n",
64
+ " --lr_scheduler=$lr_scheduler \\\n",
65
+ " --train_batch_size=$batch_size \\\n",
66
+ " --save_every_n_epochs=$save_every_n_epochs \\\n",
67
+ " --mixed_precision=\"fp16\" \\\n",
68
+ " --save_precision=\"fp16\" \\\n",
69
+ " --seed=\"1337\" \\\n",
70
+ " --cache_latents \\\n",
71
+ " --clip_skip=$clip_skip \\\n",
72
+ " --prior_loss_weight=1 \\\n",
73
+ " --max_token_length=225 \\\n",
74
+ " --caption_extension=\".txt\" \\\n",
75
+ " --save_model_as=$save_model_as \\\n",
76
+ " --xformers --shuffle_caption --use_8bit_adam"
77
+ ]
78
+ }
79
+ ],
80
+ "metadata": {
81
+ "kernelspec": {
82
+ "display_name": "Python 3",
83
+ "language": "python",
84
+ "name": "python3"
85
+ },
86
+ "language_info": {
87
+ "name": "python",
88
+ "version": "3.10.7 (tags/v3.10.7:6cc6b13, Sep 5 2022, 14:08:36) [MSC v.1933 64 bit (AMD64)]"
89
+ },
90
+ "orig_nbformat": 4,
91
+ "vscode": {
92
+ "interpreter": {
93
+ "hash": "675b13e958f0d0236d13cdfe08a1df3882cae564fa23a2e7e5eb1f2c6c632b02"
94
+ }
95
+ }
96
+ },
97
+ "nbformat": 4,
98
+ "nbformat_minor": 2
99
+ }