ACCC1380 commited on
Commit
e08d418
·
verified ·
1 Parent(s): e13cffb

Upload lora-scripts/sd-scripts/sdxl_minimal_inference.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/sdxl_minimal_inference.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 手元で推論を行うための最低限のコード。HuggingFace/DiffusersのCLIP、schedulerとVAEを使う
2
+ # Minimal code for performing inference at local. Use HuggingFace/Diffusers CLIP, scheduler and VAE
3
+
4
+ import argparse
5
+ import datetime
6
+ import math
7
+ import os
8
+ import random
9
+ from einops import repeat
10
+ import numpy as np
11
+
12
+ import torch
13
+ from library.device_utils import init_ipex, get_preferred_device
14
+
15
+ init_ipex()
16
+
17
+ from tqdm import tqdm
18
+ from transformers import CLIPTokenizer
19
+ from diffusers import EulerDiscreteScheduler
20
+ from PIL import Image
21
+
22
+ # import open_clip
23
+ from safetensors.torch import load_file
24
+
25
+ from library import model_util, sdxl_model_util
26
+ import networks.lora as lora
27
+ from library.utils import setup_logging
28
+
29
+ setup_logging()
30
+ import logging
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+ # scheduler: このあたりの設定はSD1/2と同じでいいらしい
35
+ # scheduler: The settings around here seem to be the same as SD1/2
36
+ SCHEDULER_LINEAR_START = 0.00085
37
+ SCHEDULER_LINEAR_END = 0.0120
38
+ SCHEDULER_TIMESTEPS = 1000
39
+ SCHEDLER_SCHEDULE = "scaled_linear"
40
+
41
+
42
+ # Time EmbeddingはDiffusersからのコピー
43
+ # Time Embedding is copied from Diffusers
44
+
45
+
46
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
47
+ """
48
+ Create sinusoidal timestep embeddings.
49
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
50
+ These may be fractional.
51
+ :param dim: the dimension of the output.
52
+ :param max_period: controls the minimum frequency of the embeddings.
53
+ :return: an [N x dim] Tensor of positional embeddings.
54
+ """
55
+ if not repeat_only:
56
+ half = dim // 2
57
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
58
+ device=timesteps.device
59
+ )
60
+ args = timesteps[:, None].float() * freqs[None]
61
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
62
+ if dim % 2:
63
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
64
+ else:
65
+ embedding = repeat(timesteps, "b -> b d", d=dim)
66
+ return embedding
67
+
68
+
69
+ def get_timestep_embedding(x, outdim):
70
+ assert len(x.shape) == 2
71
+ b, dims = x.shape[0], x.shape[1]
72
+ # x = rearrange(x, "b d -> (b d)")
73
+ x = torch.flatten(x)
74
+ emb = timestep_embedding(x, outdim)
75
+ # emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=outdim)
76
+ emb = torch.reshape(emb, (b, dims * outdim))
77
+ return emb
78
+
79
+
80
+ if __name__ == "__main__":
81
+ # 画像生成条件を変更する場合はここを変更 / change here to change image generation conditions
82
+
83
+ # SDXLの追加のvector embeddingへ渡す値 / Values to pass to additional vector embedding of SDXL
84
+ target_height = 1024
85
+ target_width = 1024
86
+ original_height = target_height
87
+ original_width = target_width
88
+ crop_top = 0
89
+ crop_left = 0
90
+
91
+ steps = 50
92
+ guidance_scale = 7
93
+ seed = None # 1
94
+
95
+ DEVICE = get_preferred_device()
96
+ DTYPE = torch.float16 # bfloat16 may work
97
+
98
+ parser = argparse.ArgumentParser()
99
+ parser.add_argument("--ckpt_path", type=str, required=True)
100
+ parser.add_argument("--prompt", type=str, default="A photo of a cat")
101
+ parser.add_argument("--prompt2", type=str, default=None)
102
+ parser.add_argument("--negative_prompt", type=str, default="")
103
+ parser.add_argument("--output_dir", type=str, default=".")
104
+ parser.add_argument(
105
+ "--lora_weights",
106
+ type=str,
107
+ nargs="*",
108
+ default=[],
109
+ help="LoRA weights, only supports networks.lora, each argument is a `path;multiplier` (semi-colon separated)",
110
+ )
111
+ parser.add_argument("--interactive", action="store_true")
112
+ args = parser.parse_args()
113
+
114
+ if args.prompt2 is None:
115
+ args.prompt2 = args.prompt
116
+
117
+ # HuggingFaceのmodel id
118
+ text_encoder_1_name = "openai/clip-vit-large-patch14"
119
+ text_encoder_2_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
120
+
121
+ # checkpointを読み込む。モデル変換についてはそちらの関数を参照
122
+ # Load checkpoint. For model conversion, see this function
123
+
124
+ # 本体RAMが少ない場合はGPUにロードするといいかも
125
+ # If the main RAM is small, it may be better to load it on the GPU
126
+ text_model1, text_model2, vae, unet, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
127
+ sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.ckpt_path, "cpu"
128
+ )
129
+
130
+ # Text Encoder 1はSDXL本体でもHuggingFaceのものを使っている
131
+ # In SDXL, Text Encoder 1 is also using HuggingFace's
132
+
133
+ # Text Encoder 2はSDXL本体ではopen_clipを使っている
134
+ # それを使ってもいいが、SD2のDiffusers版に合わせる形で、HuggingFaceのものを使う
135
+ # 重みの変換コードはSD2とほぼ同じ
136
+ # In SDXL, Text Encoder 2 is using open_clip
137
+ # It's okay to use it, but to match the Diffusers version of SD2, use HuggingFace's
138
+ # The weight conversion code is almost the same as SD2
139
+
140
+ # VAEの構造はSDXLもSD1/2と同じだが、重みは異なるようだ。何より謎のscale値が違う
141
+ # fp16でNaNが出やすいようだ
142
+ # The structure of VAE is the same as SD1/2, but the weights seem to be different. Above all, the mysterious scale value is different.
143
+ # NaN seems to be more likely to occur in fp16
144
+
145
+ unet.to(DEVICE, dtype=DTYPE)
146
+ unet.eval()
147
+
148
+ vae_dtype = DTYPE
149
+ if DTYPE == torch.float16:
150
+ logger.info("use float32 for vae")
151
+ vae_dtype = torch.float32
152
+ vae.to(DEVICE, dtype=vae_dtype)
153
+ vae.eval()
154
+
155
+ text_model1.to(DEVICE, dtype=DTYPE)
156
+ text_model1.eval()
157
+ text_model2.to(DEVICE, dtype=DTYPE)
158
+ text_model2.eval()
159
+
160
+ unet.set_use_memory_efficient_attention(True, False)
161
+ if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
162
+ vae.set_use_memory_efficient_attention_xformers(True)
163
+
164
+ # Tokenizers
165
+ tokenizer1 = CLIPTokenizer.from_pretrained(text_encoder_1_name)
166
+ # tokenizer2 = lambda x: open_clip.tokenize(x, context_length=77)
167
+ tokenizer2 = CLIPTokenizer.from_pretrained(text_encoder_2_name)
168
+
169
+ # LoRA
170
+ for weights_file in args.lora_weights:
171
+ if ";" in weights_file:
172
+ weights_file, multiplier = weights_file.split(";")
173
+ multiplier = float(multiplier)
174
+ else:
175
+ multiplier = 1.0
176
+
177
+ lora_model, weights_sd = lora.create_network_from_weights(
178
+ multiplier, weights_file, vae, [text_model1, text_model2], unet, None, True
179
+ )
180
+ lora_model.merge_to([text_model1, text_model2], unet, weights_sd, DTYPE, DEVICE)
181
+
182
+ # scheduler
183
+ scheduler = EulerDiscreteScheduler(
184
+ num_train_timesteps=SCHEDULER_TIMESTEPS,
185
+ beta_start=SCHEDULER_LINEAR_START,
186
+ beta_end=SCHEDULER_LINEAR_END,
187
+ beta_schedule=SCHEDLER_SCHEDULE,
188
+ )
189
+
190
+ def generate_image(prompt, prompt2, negative_prompt, seed=None):
191
+ # 将来的にサイズ情報も変えられるようにする / Make it possible to change the size information in the future
192
+ # prepare embedding
193
+ with torch.no_grad():
194
+ # vector
195
+ emb1 = get_timestep_embedding(torch.FloatTensor([original_height, original_width]).unsqueeze(0), 256)
196
+ emb2 = get_timestep_embedding(torch.FloatTensor([crop_top, crop_left]).unsqueeze(0), 256)
197
+ emb3 = get_timestep_embedding(torch.FloatTensor([target_height, target_width]).unsqueeze(0), 256)
198
+ # logger.info("emb1", emb1.shape)
199
+ c_vector = torch.cat([emb1, emb2, emb3], dim=1).to(DEVICE, dtype=DTYPE)
200
+ uc_vector = c_vector.clone().to(
201
+ DEVICE, dtype=DTYPE
202
+ ) # ちょっとここ正しいかどうかわからない I'm not sure if this is right
203
+
204
+ # crossattn
205
+
206
+ # Text Encoderを二つ呼ぶ関数 Function to call two Text Encoders
207
+ def call_text_encoder(text, text2):
208
+ # text encoder 1
209
+ batch_encoding = tokenizer1(
210
+ text,
211
+ truncation=True,
212
+ return_length=True,
213
+ return_overflowing_tokens=False,
214
+ padding="max_length",
215
+ return_tensors="pt",
216
+ )
217
+ tokens = batch_encoding["input_ids"].to(DEVICE)
218
+
219
+ with torch.no_grad():
220
+ enc_out = text_model1(tokens, output_hidden_states=True, return_dict=True)
221
+ text_embedding1 = enc_out["hidden_states"][11]
222
+ # text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding) # layer normは通さないらしい
223
+
224
+ # text encoder 2
225
+ # tokens = tokenizer2(text2).to(DEVICE)
226
+ tokens = tokenizer2(
227
+ text,
228
+ truncation=True,
229
+ return_length=True,
230
+ return_overflowing_tokens=False,
231
+ padding="max_length",
232
+ return_tensors="pt",
233
+ )
234
+ tokens = batch_encoding["input_ids"].to(DEVICE)
235
+
236
+ with torch.no_grad():
237
+ enc_out = text_model2(tokens, output_hidden_states=True, return_dict=True)
238
+ text_embedding2_penu = enc_out["hidden_states"][-2]
239
+ # logger.info("hidden_states2", text_embedding2_penu.shape)
240
+ text_embedding2_pool = enc_out["text_embeds"] # do not support Textual Inversion
241
+
242
+ # 連結して終了 concat and finish
243
+ text_embedding = torch.cat([text_embedding1, text_embedding2_penu], dim=2)
244
+ return text_embedding, text_embedding2_pool
245
+
246
+ # cond
247
+ c_ctx, c_ctx_pool = call_text_encoder(prompt, prompt2)
248
+ # logger.info(c_ctx.shape, c_ctx_p.shape, c_vector.shape)
249
+ c_vector = torch.cat([c_ctx_pool, c_vector], dim=1)
250
+
251
+ # uncond
252
+ uc_ctx, uc_ctx_pool = call_text_encoder(negative_prompt, negative_prompt)
253
+ uc_vector = torch.cat([uc_ctx_pool, uc_vector], dim=1)
254
+
255
+ text_embeddings = torch.cat([uc_ctx, c_ctx])
256
+ vector_embeddings = torch.cat([uc_vector, c_vector])
257
+
258
+ # メモリ使用量を減らすにはここでText Encoderを削除するかCPUへ移動する
259
+
260
+ if seed is not None:
261
+ random.seed(seed)
262
+ np.random.seed(seed)
263
+ torch.manual_seed(seed)
264
+ torch.cuda.manual_seed_all(seed)
265
+
266
+ # # random generator for initial noise
267
+ # generator = torch.Generator(device="cuda").manual_seed(seed)
268
+ generator = None
269
+ else:
270
+ generator = None
271
+
272
+ # get the initial random noise unless the user supplied it
273
+ # SDXLはCPUでlatentsを作成しているので一応合わせておく、Diffusersはtarget deviceでlatentsを作成している
274
+ # SDXL creates latents in CPU, Diffusers creates latents in target device
275
+ latents_shape = (1, 4, target_height // 8, target_width // 8)
276
+ latents = torch.randn(
277
+ latents_shape,
278
+ generator=generator,
279
+ device="cpu",
280
+ dtype=torch.float32,
281
+ ).to(DEVICE, dtype=DTYPE)
282
+
283
+ # scale the initial noise by the standard deviation required by the scheduler
284
+ latents = latents * scheduler.init_noise_sigma
285
+
286
+ # set timesteps
287
+ scheduler.set_timesteps(steps, DEVICE)
288
+
289
+ # このへんはDiffusersからのコピペ
290
+ # Copy from Diffusers
291
+ timesteps = scheduler.timesteps.to(DEVICE) # .to(DTYPE)
292
+ num_latent_input = 2
293
+ with torch.no_grad():
294
+ for i, t in enumerate(tqdm(timesteps)):
295
+ # expand the latents if we are doing classifier free guidance
296
+ latent_model_input = latents.repeat((num_latent_input, 1, 1, 1))
297
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
298
+
299
+ noise_pred = unet(latent_model_input, t, text_embeddings, vector_embeddings)
300
+
301
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_latent_input) # uncond by negative prompt
302
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
303
+
304
+ # compute the previous noisy sample x_t -> x_t-1
305
+ # latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
306
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
307
+
308
+ # latents = 1 / 0.18215 * latents
309
+ latents = 1 / sdxl_model_util.VAE_SCALE_FACTOR * latents
310
+ latents = latents.to(vae_dtype)
311
+ image = vae.decode(latents).sample
312
+ image = (image / 2 + 0.5).clamp(0, 1)
313
+
314
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
315
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
316
+
317
+ # image = self.numpy_to_pil(image)
318
+ image = (image * 255).round().astype("uint8")
319
+ image = [Image.fromarray(im) for im in image]
320
+
321
+ # 保存して終了 save and finish
322
+ timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
323
+ for i, img in enumerate(image):
324
+ img.save(os.path.join(args.output_dir, f"image_{timestamp}_{i:03d}.png"))
325
+
326
+ if not args.interactive:
327
+ generate_image(args.prompt, args.prompt2, args.negative_prompt, seed)
328
+ else:
329
+ # loop for interactive
330
+ while True:
331
+ prompt = input("prompt: ")
332
+ if prompt == "":
333
+ break
334
+ prompt2 = input("prompt2: ")
335
+ if prompt2 == "":
336
+ prompt2 = prompt
337
+ negative_prompt = input("negative prompt: ")
338
+ seed = input("seed: ")
339
+ if seed == "":
340
+ seed = None
341
+ else:
342
+ seed = int(seed)
343
+ generate_image(prompt, prompt2, negative_prompt, seed)
344
+
345
+ logger.info("Done!")