ACCC1380 commited on
Commit
e677f34
·
verified ·
1 Parent(s): b1e39bc

Upload lora-scripts/sd-scripts/sdxl_train_network.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/sdxl_train_network.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import torch
4
+ from library.device_utils import init_ipex, clean_memory_on_device
5
+ init_ipex()
6
+
7
+ from library import sdxl_model_util, sdxl_train_util, train_util
8
+ import train_network
9
+ from library.utils import setup_logging
10
+ setup_logging()
11
+ import logging
12
+ logger = logging.getLogger(__name__)
13
+
14
+ class SdxlNetworkTrainer(train_network.NetworkTrainer):
15
+ def __init__(self):
16
+ super().__init__()
17
+ self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
18
+ self.is_sdxl = True
19
+
20
+ def assert_extra_args(self, args, train_dataset_group):
21
+ super().assert_extra_args(args, train_dataset_group)
22
+ sdxl_train_util.verify_sdxl_training_args(args)
23
+
24
+ if args.cache_text_encoder_outputs:
25
+ assert (
26
+ train_dataset_group.is_text_encoder_output_cacheable()
27
+ ), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
28
+
29
+ assert (
30
+ args.network_train_unet_only or not args.cache_text_encoder_outputs
31
+ ), "network for Text Encoder cannot be trained with caching Text Encoder outputs / Text Encoderの出力をキャッシュしながらText Encoderのネットワークを学習することはできません"
32
+
33
+ train_dataset_group.verify_bucket_reso_steps(32)
34
+
35
+ def load_target_model(self, args, weight_dtype, accelerator):
36
+ (
37
+ load_stable_diffusion_format,
38
+ text_encoder1,
39
+ text_encoder2,
40
+ vae,
41
+ unet,
42
+ logit_scale,
43
+ ckpt_info,
44
+ ) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
45
+
46
+ self.load_stable_diffusion_format = load_stable_diffusion_format
47
+ self.logit_scale = logit_scale
48
+ self.ckpt_info = ckpt_info
49
+
50
+ return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet
51
+
52
+ def load_tokenizer(self, args):
53
+ tokenizer = sdxl_train_util.load_tokenizers(args)
54
+ return tokenizer
55
+
56
+ def is_text_encoder_outputs_cached(self, args):
57
+ return args.cache_text_encoder_outputs
58
+
59
+ def cache_text_encoder_outputs_if_needed(
60
+ self, args, accelerator, unet, vae, tokenizers, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
61
+ ):
62
+ if args.cache_text_encoder_outputs:
63
+ if not args.lowram:
64
+ # メモリ消費を減らす
65
+ logger.info("move vae and unet to cpu to save memory")
66
+ org_vae_device = vae.device
67
+ org_unet_device = unet.device
68
+ vae.to("cpu")
69
+ unet.to("cpu")
70
+ clean_memory_on_device(accelerator.device)
71
+
72
+ # When TE is not be trained, it will not be prepared so we need to use explicit autocast
73
+ with accelerator.autocast():
74
+ dataset.cache_text_encoder_outputs(
75
+ tokenizers,
76
+ text_encoders,
77
+ accelerator.device,
78
+ weight_dtype,
79
+ args.cache_text_encoder_outputs_to_disk,
80
+ accelerator.is_main_process,
81
+ )
82
+
83
+ text_encoders[0].to("cpu", dtype=torch.float32) # Text Encoder doesn't work with fp16 on CPU
84
+ text_encoders[1].to("cpu", dtype=torch.float32)
85
+ clean_memory_on_device(accelerator.device)
86
+
87
+ if not args.lowram:
88
+ logger.info("move vae and unet back to original device")
89
+ vae.to(org_vae_device)
90
+ unet.to(org_unet_device)
91
+ else:
92
+ # Text Encoderから毎回出力を取得するので、GPUに乗せておく
93
+ text_encoders[0].to(accelerator.device, dtype=weight_dtype)
94
+ text_encoders[1].to(accelerator.device, dtype=weight_dtype)
95
+
96
+ def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
97
+ if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
98
+ input_ids1 = batch["input_ids"]
99
+ input_ids2 = batch["input_ids2"]
100
+ with torch.enable_grad():
101
+ # Get the text embedding for conditioning
102
+ # TODO support weighted captions
103
+ # if args.weighted_captions:
104
+ # encoder_hidden_states = get_weighted_text_embeddings(
105
+ # tokenizer,
106
+ # text_encoder,
107
+ # batch["captions"],
108
+ # accelerator.device,
109
+ # args.max_token_length // 75 if args.max_token_length else 1,
110
+ # clip_skip=args.clip_skip,
111
+ # )
112
+ # else:
113
+ input_ids1 = input_ids1.to(accelerator.device)
114
+ input_ids2 = input_ids2.to(accelerator.device)
115
+ encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
116
+ args.max_token_length,
117
+ input_ids1,
118
+ input_ids2,
119
+ tokenizers[0],
120
+ tokenizers[1],
121
+ text_encoders[0],
122
+ text_encoders[1],
123
+ None if not args.full_fp16 else weight_dtype,
124
+ accelerator=accelerator,
125
+ )
126
+ else:
127
+ encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
128
+ encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
129
+ pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
130
+
131
+ # # verify that the text encoder outputs are correct
132
+ # ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
133
+ # args.max_token_length,
134
+ # batch["input_ids"].to(text_encoders[0].device),
135
+ # batch["input_ids2"].to(text_encoders[0].device),
136
+ # tokenizers[0],
137
+ # tokenizers[1],
138
+ # text_encoders[0],
139
+ # text_encoders[1],
140
+ # None if not args.full_fp16 else weight_dtype,
141
+ # )
142
+ # b_size = encoder_hidden_states1.shape[0]
143
+ # assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
144
+ # assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
145
+ # assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
146
+ # logger.info("text encoder outputs verified")
147
+
148
+ return encoder_hidden_states1, encoder_hidden_states2, pool2
149
+
150
+ def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
151
+ noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
152
+
153
+ # get size embeddings
154
+ orig_size = batch["original_sizes_hw"]
155
+ crop_size = batch["crop_top_lefts"]
156
+ target_size = batch["target_sizes_hw"]
157
+ embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
158
+
159
+ # concat embeddings
160
+ encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
161
+ vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
162
+ text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
163
+
164
+ noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
165
+ return noise_pred
166
+
167
+ def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet):
168
+ sdxl_train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet)
169
+
170
+
171
+ def setup_parser() -> argparse.ArgumentParser:
172
+ parser = train_network.setup_parser()
173
+ sdxl_train_util.add_sdxl_training_arguments(parser)
174
+ return parser
175
+
176
+
177
+ if __name__ == "__main__":
178
+ parser = setup_parser()
179
+
180
+ args = parser.parse_args()
181
+ train_util.verify_command_line_training_args(args)
182
+ args = train_util.read_config_from_file(args, parser)
183
+
184
+ trainer = SdxlNetworkTrainer()
185
+ trainer.train(args)