add data
Browse files- data/1990.h5 +3 -0
- quakeflow_demo.py +214 -0
data/1990.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fd8404fa0d8a6939c0daa76ccaed24e28ccf649eee8364c50a13c1689bb658f
|
3 |
+
size 59532944
|
quakeflow_demo.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import fsspec
|
5 |
+
import h5py
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@InProceedings{huggingface:dataset,
|
11 |
+
title = {NCEDC dataset for QuakeFlow},
|
12 |
+
author={Zhu et al.},
|
13 |
+
year={2023}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = ""
|
22 |
+
|
23 |
+
_LICENSE = ""
|
24 |
+
|
25 |
+
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
26 |
+
_FILES = ["1990.h5"]
|
27 |
+
_URLS = {
|
28 |
+
"station": [f"{_REPO}/{x}" for x in _FILES],
|
29 |
+
"event": [f"{_REPO}/{x}" for x in _FILES],
|
30 |
+
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
31 |
+
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
32 |
+
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
33 |
+
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
class BatchBuilderConfig(datasets.BuilderConfig):
|
38 |
+
"""
|
39 |
+
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
40 |
+
Batch Config for QuakeFlow_NC
|
41 |
+
:param batch_size: number of samples in a batch
|
42 |
+
:param num_stations_list: possible number of stations in a batch
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, batch_size: int, num_stations_list: List, **kwargs):
|
46 |
+
super().__init__(**kwargs)
|
47 |
+
self.batch_size = batch_size
|
48 |
+
self.num_stations_list = num_stations_list
|
49 |
+
|
50 |
+
|
51 |
+
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
52 |
+
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
53 |
+
|
54 |
+
VERSION = datasets.Version("1.1.0")
|
55 |
+
|
56 |
+
degree2km = 111.32
|
57 |
+
nt = 8192
|
58 |
+
feature_nt = 512
|
59 |
+
feature_scale = int(nt / feature_nt)
|
60 |
+
sampling_rate = 100.0
|
61 |
+
|
62 |
+
BUILDER_CONFIGS = [
|
63 |
+
datasets.BuilderConfig(
|
64 |
+
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
|
65 |
+
),
|
66 |
+
datasets.BuilderConfig(
|
67 |
+
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
|
68 |
+
),
|
69 |
+
datasets.BuilderConfig(
|
70 |
+
name="station_train",
|
71 |
+
version=VERSION,
|
72 |
+
description="yield station-based samples one by one of training dataset",
|
73 |
+
),
|
74 |
+
datasets.BuilderConfig(
|
75 |
+
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
|
76 |
+
),
|
77 |
+
datasets.BuilderConfig(
|
78 |
+
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
|
79 |
+
),
|
80 |
+
datasets.BuilderConfig(
|
81 |
+
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
DEFAULT_CONFIG_NAME = "station_test"
|
86 |
+
|
87 |
+
def _info(self):
|
88 |
+
if (
|
89 |
+
(self.config.name == "station")
|
90 |
+
or (self.config.name == "station_train")
|
91 |
+
or (self.config.name == "station_test")
|
92 |
+
):
|
93 |
+
features = datasets.Features(
|
94 |
+
{
|
95 |
+
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
96 |
+
}
|
97 |
+
)
|
98 |
+
|
99 |
+
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
103 |
+
}
|
104 |
+
)
|
105 |
+
|
106 |
+
return datasets.DatasetInfo(
|
107 |
+
description=_DESCRIPTION,
|
108 |
+
features=features,
|
109 |
+
homepage=_HOMEPAGE,
|
110 |
+
license=_LICENSE,
|
111 |
+
citation=_CITATION,
|
112 |
+
)
|
113 |
+
|
114 |
+
def _split_generators(self, dl_manager):
|
115 |
+
urls = _URLS[self.config.name]
|
116 |
+
files = dl_manager.download_and_extract(urls)
|
117 |
+
print(files)
|
118 |
+
|
119 |
+
if self.config.name == "station" or self.config.name == "event":
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepath": files[:-1],
|
125 |
+
"split": "train",
|
126 |
+
},
|
127 |
+
),
|
128 |
+
datasets.SplitGenerator(
|
129 |
+
name=datasets.Split.TEST,
|
130 |
+
gen_kwargs={"filepath": files[-1:], "split": "test"},
|
131 |
+
),
|
132 |
+
]
|
133 |
+
elif self.config.name == "station_train" or self.config.name == "event_train":
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={
|
138 |
+
"filepath": files,
|
139 |
+
"split": "train",
|
140 |
+
},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
elif self.config.name == "station_test" or self.config.name == "event_test":
|
144 |
+
return [
|
145 |
+
datasets.SplitGenerator(
|
146 |
+
name=datasets.Split.TEST,
|
147 |
+
gen_kwargs={"filepath": files, "split": "test"},
|
148 |
+
),
|
149 |
+
]
|
150 |
+
else:
|
151 |
+
raise ValueError("config.name is not in BUILDER_CONFIGS")
|
152 |
+
|
153 |
+
def _generate_examples(self, filepath, split):
|
154 |
+
for file in filepath:
|
155 |
+
with fsspec.open(file, "rb") as fs:
|
156 |
+
with h5py.File(fs, "r") as fp:
|
157 |
+
event_ids = list(fp.keys())
|
158 |
+
for event_id in event_ids:
|
159 |
+
event = fp[event_id]
|
160 |
+
station_ids = list(event.keys())
|
161 |
+
if (
|
162 |
+
(self.config.name == "station")
|
163 |
+
or (self.config.name == "station_train")
|
164 |
+
or (self.config.name == "station_test")
|
165 |
+
):
|
166 |
+
waveforms = np.zeros([3, self.nt], dtype="float32")
|
167 |
+
phase_pick = np.zeros_like(waveforms)
|
168 |
+
station_attrs = event.attrs
|
169 |
+
event_location = [
|
170 |
+
station_attrs["longitude"],
|
171 |
+
station_attrs["latitude"],
|
172 |
+
station_attrs["depth_km"],
|
173 |
+
station_attrs["event_time_index"],
|
174 |
+
]
|
175 |
+
|
176 |
+
for i, sta_id in enumerate(station_ids):
|
177 |
+
waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
|
178 |
+
station_attrs = event[sta_id].attrs
|
179 |
+
|
180 |
+
yield f"{event_id}/{sta_id}", {"data": torch.from_numpy(waveforms).float()}
|
181 |
+
|
182 |
+
elif (
|
183 |
+
(self.config.name == "event")
|
184 |
+
or (self.config.name == "event_train")
|
185 |
+
or (self.config.name == "event_test")
|
186 |
+
):
|
187 |
+
event_attrs = event.attrs
|
188 |
+
|
189 |
+
is_sick = False
|
190 |
+
for sta_id in station_ids:
|
191 |
+
station_attrs = event[sta_id].attrs
|
192 |
+
if (
|
193 |
+
station_attrs["phase_index"][station_attrs["phase_type"] == "P"]
|
194 |
+
== station_attrs["phase_index"][station_attrs["phase_type"] == "S"]
|
195 |
+
):
|
196 |
+
is_sick = True
|
197 |
+
break
|
198 |
+
if is_sick:
|
199 |
+
continue
|
200 |
+
|
201 |
+
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
202 |
+
|
203 |
+
for i, sta_id in enumerate(station_ids):
|
204 |
+
waveforms[i, :, :] = event[sta_id][:, : self.nt]
|
205 |
+
station_attrs = event[sta_id].attrs
|
206 |
+
p_picks = station_attrs["phase_index"][station_attrs["phase_type"] == "P"]
|
207 |
+
s_picks = station_attrs["phase_index"][station_attrs["phase_type"] == "S"]
|
208 |
+
|
209 |
+
std = np.std(waveforms, axis=1, keepdims=True)
|
210 |
+
std[std == 0] = 1.0
|
211 |
+
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
|
212 |
+
waveforms = waveforms.astype(np.float32)
|
213 |
+
|
214 |
+
yield event_id, {"data": torch.from_numpy(waveforms).float()}
|