Datasets:
ArXiv:
DOI:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
# Lint as: python3 | |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
from typing import Dict, List, Optional, Tuple, Union | |
import datasets | |
import fsspec | |
import h5py | |
import numpy as np | |
import torch | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {NCEDC dataset for QuakeFlow}, | |
author={Zhu et al.}, | |
year={2023} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_ps_h5" | |
_FILES = [ | |
"1987.h5", | |
"1988.h5", | |
"1989.h5", | |
"1990.h5", | |
"1991.h5", | |
"1992.h5", | |
"1993.h5", | |
"1994.h5", | |
"1995.h5", | |
"1996.h5", | |
"1997.h5", | |
"1998.h5", | |
"1999.h5", | |
"2000.h5", | |
"2001.h5", | |
"2002.h5", | |
"2003.h5", | |
"2004.h5", | |
"2005.h5", | |
"2006.h5", | |
"2007.h5", | |
"2008.h5", | |
"2009.h5", | |
"2010.h5", | |
"2011.h5", | |
"2012.h5", | |
"2013.h5", | |
"2014.h5", | |
"2015.h5", | |
"2016.h5", | |
"2017.h5", | |
"2018.h5", | |
"2019.h5", | |
"2020.h5", | |
"2021.h5", | |
"2022.h5", | |
"2023.h5", | |
] | |
_URLS = { | |
"station": [f"{_REPO}/{x}" for x in _FILES], | |
"event": [f"{_REPO}/{x}" for x in _FILES], | |
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
} | |
class BatchBuilderConfig(datasets.BuilderConfig): | |
""" | |
yield a batch of event-based sample, so the number of sample stations can vary among batches | |
Batch Config for QuakeFlow_NC | |
:param batch_size: number of samples in a batch | |
:param num_stations_list: possible number of stations in a batch | |
""" | |
def __init__(self, batch_size: int, num_stations_list: List, **kwargs): | |
super().__init__(**kwargs) | |
self.batch_size = batch_size | |
self.num_stations_list = num_stations_list | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder): | |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
VERSION = datasets.Version("1.1.0") | |
nt = 8192 | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset` | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" | |
), | |
datasets.BuilderConfig( | |
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" | |
), | |
datasets.BuilderConfig( | |
name="station_train", | |
version=VERSION, | |
description="yield station-based samples one by one of training dataset", | |
), | |
datasets.BuilderConfig( | |
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" | |
), | |
datasets.BuilderConfig( | |
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" | |
), | |
datasets.BuilderConfig( | |
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" | |
), | |
] | |
DEFAULT_CONFIG_NAME = ( | |
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if ( | |
(self.config.name == "station") | |
or (self.config.name == "station_train") | |
or (self.config.name == "station_test") | |
): | |
features = datasets.Features( | |
{ | |
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"), | |
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype="float32"), | |
"phase_time": datasets.Sequence(datasets.Value("string")), | |
"phase_index": datasets.Sequence(datasets.Value("int32")), | |
"phase_type": datasets.Sequence(datasets.Value("string")), | |
"phase_polarity": datasets.Sequence(datasets.Value("string")), | |
"begin_time": datasets.Value("string"), | |
"end_time": datasets.Value("string"), | |
"event_location": datasets.Sequence(datasets.Value("float32")), | |
"station_location": datasets.Sequence(datasets.Value("float32")), | |
}, | |
) | |
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"): | |
features = datasets.Features( | |
{ | |
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"), | |
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype="float32"), | |
"phase_time": datasets.Sequence(datasets.Value("string")), | |
"phase_index": datasets.Sequence(datasets.Value("int32")), | |
"phase_type": datasets.Sequence(datasets.Value("string")), | |
"phase_polarity": datasets.Sequence(datasets.Value("string")), | |
"begin_time": datasets.Value("string"), | |
"end_time": datasets.Value("string"), | |
"event_location": datasets.Sequence(datasets.Value("float32")), | |
"station_location": datasets.Sequence(datasets.Value("float32")), | |
}, | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
# files = dl_manager.download(urls) | |
files = dl_manager.download_and_extract(urls) | |
print(files) | |
if self.config.name == "station" or self.config.name == "event": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": files[:-1], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": files[-1:], "split": "test"}, | |
), | |
] | |
elif self.config.name == "station_train" or self.config.name == "event_train": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": files, | |
"split": "train", | |
}, | |
), | |
] | |
elif self.config.name == "station_test" or self.config.name == "event_test": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": files, "split": "test"}, | |
), | |
] | |
else: | |
raise ValueError("config.name is not in BUILDER_CONFIGS") | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
for file in filepath: | |
with fsspec.open(file, "rb") as fs: | |
with h5py.File(fs, "r") as fp: | |
event_ids = list(fp.keys()) | |
for event_id in event_ids: | |
event = fp[event_id] | |
event_attrs = event.attrs | |
begin_time = event_attrs["begin_time"] | |
end_time = event_attrs["end_time"] | |
event_location = [ | |
event_attrs["longitude"], | |
event_attrs["latitude"], | |
event_attrs["depth_km"], | |
event_attrs["event_time_index"], | |
] | |
station_ids = list(event.keys()) | |
if ( | |
(self.config.name == "station") | |
or (self.config.name == "station_train") | |
or (self.config.name == "station_test") | |
): | |
waveforms = np.zeros([3, self.nt], dtype="float32") | |
for i, sta_id in enumerate(station_ids): | |
waveforms[:, : self.nt] = event[sta_id][:, : self.nt] | |
attrs = event[sta_id].attrs | |
phase_type = attrs["phase_type"] | |
phase_time = attrs["phase_time"] | |
phase_index = attrs["phase_index"] | |
phase_polarity = attrs["phase_polarity"] | |
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] | |
yield f"{event_id}/{sta_id}", { | |
"data": waveforms, | |
"phase_time": phase_time, | |
"phase_index": phase_index, | |
"phase_type": phase_type, | |
"phase_polarity": phase_polarity, | |
"begin_time": begin_time, | |
"end_time": end_time, | |
"event_location": event_location, | |
"station_location": station_location, | |
} | |
elif ( | |
(self.config.name == "event") | |
or (self.config.name == "event_train") | |
or (self.config.name == "event_test") | |
): | |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32") | |
phase_type = [] | |
phase_time = [] | |
phase_index = [] | |
phase_polarity = [] | |
station_location = [] | |
for i, sta_id in enumerate(station_ids): | |
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt] | |
attrs = event[sta_id].attrs | |
phase_type.append(attrs["phase_type"]) | |
phase_time.append(attrs["phase_time"]) | |
phase_index.append(attrs["phase_index"]) | |
phase_polarity.append(attrs["phase_polarity"]) | |
station_location.append( | |
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] | |
) | |
yield event_id, { | |
"data": waveforms, | |
"phase_time": phase_time, | |
"phase_index": phase_index, | |
"phase_type": phase_type, | |
"phase_polarity": phase_polarity, | |
"begin_time": begin_time, | |
"end_time": end_time, | |
"event_location": event_location, | |
"station_location": station_location, | |
} | |