Datasets:
ArXiv:
DOI:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
# Lint as: python3 | |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
from typing import Dict, List, Optional, Tuple, Union | |
import datasets | |
import fsspec | |
import h5py | |
import numpy as np | |
import torch | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {NCEDC dataset for QuakeFlow}, | |
author={Zhu et al.}, | |
year={2023} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_ps_h5" | |
_FILES = [ | |
"1987.h5", | |
"1988.h5", | |
"1989.h5", | |
"1990.h5", | |
"1991.h5", | |
"1992.h5", | |
"1993.h5", | |
"1994.h5", | |
"1995.h5", | |
"1996.h5", | |
"1997.h5", | |
"1998.h5", | |
"1999.h5", | |
"2000.h5", | |
"2001.h5", | |
"2002.h5", | |
"2003.h5", | |
"2004.h5", | |
"2005.h5", | |
"2006.h5", | |
"2007.h5", | |
"2008.h5", | |
"2009.h5", | |
"2010.h5", | |
"2011.h5", | |
"2012.h5", | |
"2013.h5", | |
"2014.h5", | |
"2015.h5", | |
"2016.h5", | |
"2017.h5", | |
"2018.h5", | |
"2019.h5", | |
"2020.h5", | |
"2021.h5", | |
"2022.h5", | |
"2023.h5", | |
] | |
_URLS = { | |
"station": [f"{_REPO}/{x}" for x in _FILES], | |
"event": [f"{_REPO}/{x}" for x in _FILES], | |
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], | |
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], | |
} | |
class BatchBuilderConfig(datasets.BuilderConfig): | |
""" | |
yield a batch of event-based sample, so the number of sample stations can vary among batches | |
Batch Config for QuakeFlow_NC | |
:param batch_size: number of samples in a batch | |
:param num_stations_list: possible number of stations in a batch | |
""" | |
def __init__(self, batch_size: int, num_stations_list: List, **kwargs): | |
super().__init__(**kwargs) | |
self.batch_size = batch_size | |
self.num_stations_list = num_stations_list | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder): | |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" | |
VERSION = datasets.Version("1.1.0") | |
degree2km = 111.32 | |
nt = 8192 | |
feature_nt = 512 | |
feature_scale = int(nt / feature_nt) | |
sampling_rate = 100.0 | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset` | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" | |
), | |
datasets.BuilderConfig( | |
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" | |
), | |
datasets.BuilderConfig( | |
name="station_train", | |
version=VERSION, | |
description="yield station-based samples one by one of training dataset", | |
), | |
datasets.BuilderConfig( | |
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" | |
), | |
datasets.BuilderConfig( | |
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" | |
), | |
datasets.BuilderConfig( | |
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" | |
), | |
] | |
DEFAULT_CONFIG_NAME = ( | |
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if ( | |
(self.config.name == "station") | |
or (self.config.name == "station_train") | |
or (self.config.name == "station_test") | |
): | |
features=datasets.Features( | |
{ | |
"data": datasets.Array2D(shape=(3, self.nt), dtype='float32'), | |
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype='float32'), | |
"event_location": datasets.Sequence(datasets.Value("float32")), | |
"station_location": datasets.Sequence(datasets.Value("float32")), | |
}) | |
elif ( | |
(self.config.name == "event") | |
or (self.config.name == "event_train") | |
or (self.config.name == "event_test") | |
): | |
features=datasets.Features( | |
{ | |
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'), | |
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'), | |
"event_center" : datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'), | |
"event_location": datasets.Array3D(shape=(None, 4, self.feature_nt), dtype='float32'), | |
"event_location_mask": datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'), | |
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
# files = dl_manager.download(urls) | |
files = dl_manager.download_and_extract(urls) | |
print(files) | |
if self.config.name == "station" or self.config.name == "event": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": files[:-1], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": files[-1:], "split": "test"}, | |
), | |
] | |
elif self.config.name == "station_train" or self.config.name == "event_train": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": files, | |
"split": "train", | |
}, | |
), | |
] | |
elif self.config.name == "station_test" or self.config.name == "event_test": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": files, "split": "test"}, | |
), | |
] | |
else: | |
raise ValueError("config.name is not in BUILDER_CONFIGS") | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
for file in filepath: | |
with fsspec.open(file, "rb") as fs: | |
with h5py.File(fs, "r") as fp: | |
# for event_id in sorted(list(fp.keys())): | |
event_ids = list(fp.keys()) | |
for event_id in event_ids: | |
event = fp[event_id] | |
station_ids = list(event.keys()) | |
if ( | |
(self.config.name == "station") | |
or (self.config.name == "station_train") | |
or (self.config.name == "station_test") | |
): | |
waveforms = np.zeros([3, self.nt], dtype="float32") | |
phase_pick = np.zeros_like(waveforms) | |
attrs = event.attrs | |
event_location = [ | |
attrs["longitude"], | |
attrs["latitude"], | |
attrs["depth_km"], | |
attrs["event_time_index"], | |
] | |
for i, sta_id in enumerate(station_ids): | |
waveforms[:, : self.nt] = event[sta_id][:, :self.nt] | |
# waveforms[:, : self.nt] = event[sta_id][: self.nt, :].T | |
attrs = event[sta_id].attrs | |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"] | |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"] | |
phase_pick[:, :self.nt] = generate_label([p_picks, s_picks], nt=self.nt) | |
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] | |
yield f"{event_id}/{sta_id}", { | |
"data": torch.from_numpy(waveforms).float(), | |
"phase_pick": torch.from_numpy(phase_pick).float(), | |
"event_location": torch.from_numpy(np.array(event_location)).float(), | |
"station_location": torch.from_numpy(np.array(station_location)).float(), | |
} | |
elif ( | |
(self.config.name == "event") | |
or (self.config.name == "event_train") | |
or (self.config.name == "event_test") | |
): | |
event_attrs = event.attrs | |
# avoid stations with P arrival equals S arrival | |
is_sick = False | |
for sta_id in station_ids: | |
attrs = event[sta_id].attrs | |
if attrs["phase_index"][attrs["phase_type"] == "P"] == attrs["phase_index"][attrs["phase_type"] == "S"]: | |
is_sick = True | |
break | |
if is_sick: | |
continue | |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32") | |
phase_pick = np.zeros_like(waveforms) | |
event_center = np.zeros([len(station_ids), self.nt]) | |
event_location = np.zeros([len(station_ids), 4, self.nt]) | |
event_location_mask = np.zeros([len(station_ids), self.nt]) | |
station_location = np.zeros([len(station_ids), 3]) | |
for i, sta_id in enumerate(station_ids): | |
# trace_id = event_id + "/" + sta_id | |
waveforms[i, :, :] = event[sta_id][:, :self.nt] | |
attrs = event[sta_id].attrs | |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"] | |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"] | |
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt) | |
## TODO: how to deal with multiple phases | |
# center = (attrs["phase_index"][::2] + attrs["phase_index"][1::2])/2.0 | |
## assuming only one event with both P and S picks | |
c0 = ((p_picks) + (s_picks)) / 2.0 # phase center | |
c0_width = ((s_picks - p_picks) * self.sampling_rate / 200.0).max() if p_picks!=s_picks else 50 | |
dx = round( | |
(event_attrs["longitude"] - attrs["longitude"]) | |
* np.cos(np.radians(event_attrs["latitude"])) | |
* self.degree2km, | |
2, | |
) | |
dy = round( | |
(event_attrs["latitude"] - attrs["latitude"]) | |
* self.degree2km, | |
2, | |
) | |
dz = round( | |
event_attrs["depth_km"] + attrs["elevation_m"] / 1e3, | |
2, | |
) | |
event_center[i, :] = generate_label( | |
[ | |
# [c0 / self.feature_scale], | |
c0, | |
], | |
label_width=[ | |
c0_width, | |
], | |
# label_width=[ | |
# 10, | |
# ], | |
# nt=self.feature_nt, | |
nt=self.nt, | |
)[1, :] | |
mask = event_center[i, :] >= 0.5 | |
event_location[i, 0, :] = ( | |
np.arange(self.nt) - event_attrs["event_time_index"] | |
) / self.sampling_rate | |
# event_location[0, :, i] = (np.arange(self.feature_nt) - 3000 / self.feature_scale) / self.sampling_rate | |
# print(event_location[i, 1:, mask].shape, event_location.shape, event_location[i][1:, mask].shape) | |
event_location[i][1:, mask] = np.array([dx, dy, dz])[:, np.newaxis] | |
event_location_mask[i, :] = mask | |
## station location | |
station_location[i, 0] = round( | |
attrs["longitude"] | |
* np.cos(np.radians(attrs["latitude"])) | |
* self.degree2km, | |
2, | |
) | |
station_location[i, 1] = round(attrs["latitude"] * self.degree2km, 2) | |
station_location[i, 2] = round(-attrs["elevation_m"]/1e3, 2) | |
std = np.std(waveforms, axis=1, keepdims=True) | |
std[std == 0] = 1.0 | |
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std | |
waveforms = waveforms.astype(np.float32) | |
yield event_id, { | |
"data": torch.from_numpy(waveforms).float(), | |
"phase_pick": torch.from_numpy(phase_pick).float(), | |
"event_center": torch.from_numpy(event_center[:, ::self.feature_scale]).float(), | |
"event_location": torch.from_numpy(event_location[:, :, ::self.feature_scale]).float(), | |
"event_location_mask": torch.from_numpy(event_location_mask[:, ::self.feature_scale]).float(), | |
"station_location": torch.from_numpy(station_location).float(), | |
} | |
def generate_label(phase_list, label_width=[150, 150], nt=8192): | |
target = np.zeros([len(phase_list) + 1, nt], dtype=np.float32) | |
for i, (picks, w) in enumerate(zip(phase_list, label_width)): | |
for phase_time in picks: | |
t = np.arange(nt) - phase_time | |
gaussian = np.exp(-(t**2) / (2 * (w / 6) ** 2)) | |
gaussian[gaussian < 0.1] = 0.0 | |
target[i + 1, :] += gaussian | |
target[0:1, :] = np.maximum(0, 1 - np.sum(target[1:, :], axis=0, keepdims=True)) | |
return target | |