update EQNet event example generator and readme (#4)
Browse files- update event examples and readme (29c9ad14402ae5818e14f7c1317b7825d3952c83)
Co-authored-by: kylewhy <kylewhy@users.noreply.huggingface.co>
- README.md +78 -108
- quakeflow_nc.py +102 -30
README.md
CHANGED
@@ -5,7 +5,7 @@ license: mit
|
|
5 |
# Quakeflow_NC
|
6 |
|
7 |
## Introduction
|
8 |
-
This dataset is part of the data from [NCEDC (Northern California Earthquake Data Center)](https://ncedc.org/index.html) and is organized as several HDF5 files. The dataset structure is shown below
|
9 |
|
10 |
Cite the NCEDC:
|
11 |
"NCEDC (2014), Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC."
|
@@ -14,63 +14,45 @@ Acknowledge the NCEDC:
|
|
14 |
"Waveform data, metadata, or data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC."
|
15 |
|
16 |
```
|
17 |
-
Group: / len:
|
18 |
-
|- Group: /
|
19 |
-
| |-* begin_time =
|
20 |
-
| |-* depth_km =
|
21 |
-
| |-* end_time =
|
22 |
-
| |-* event_id =
|
23 |
-
| |-* event_time =
|
24 |
-
| |-* event_time_index =
|
25 |
-
| |-* latitude = 37.
|
26 |
-
| |-* longitude = -118.
|
27 |
-
| |-* magnitude =
|
28 |
| |-* magnitude_type = D
|
29 |
-
| |-* num_stations =
|
30 |
-
| |- Dataset: /
|
31 |
| | |- (dtype=float32)
|
32 |
-
| | | |-* azimuth =
|
33 |
-
| | | |-* component = ['Z']
|
34 |
-
| | | |-* distance_km =
|
35 |
| | | |-* dt_s = 0.01
|
36 |
-
| | | |-* elevation_m =
|
37 |
-
| | | |-* emergence_angle =
|
38 |
-
| | | |-* event_id = ['
|
39 |
-
| | | |-* latitude = 37.
|
40 |
| | | |-* location =
|
41 |
-
| | | |-* longitude = -118.
|
42 |
| | | |-* network = NC
|
43 |
-
| | | |-* phase_index = [
|
44 |
| | | |-* phase_polarity = ['U' 'N']
|
45 |
-
| | | |-* phase_remark = ['IP' '
|
46 |
-
| | | |-* phase_score = [1
|
47 |
-
| | | |-* phase_time = ['
|
48 |
| | | |-* phase_type = ['P' 'S']
|
49 |
-
| | | |-* snr = [
|
50 |
-
| | | |-* station =
|
51 |
| | | |-* unit = 1e-6m/s
|
52 |
-
| |- Dataset: /
|
53 |
| | |- (dtype=float32)
|
54 |
-
| | | |-* azimuth =
|
55 |
-
| | | |-* component = ['Z']
|
56 |
-
| | | |-* distance_km = 22.5
|
57 |
-
| | | |-* dt_s = 0.01
|
58 |
-
| | | |-* elevation_m = 2476.0
|
59 |
-
| | | |-* emergence_angle = 102.0
|
60 |
-
| | | |-* event_id = ['nc100012' 'nc100012']
|
61 |
-
| | | |-* latitude = 37.7154
|
62 |
-
| | | |-* location = N1
|
63 |
-
| | | |-* longitude = -118.5741
|
64 |
-
| | | |-* network = NN
|
65 |
-
| | | |-* phase_index = [3010 3330]
|
66 |
-
| | | |-* phase_polarity = ['U' 'N']
|
67 |
-
| | | |-* phase_remark = ['IP' 'S']
|
68 |
-
| | | |-* phase_score = [0 0]
|
69 |
-
| | | |-* phase_time = ['1987-05-08T00:16:18.990' '1987-05-08T00:16:22.190']
|
70 |
-
| | | |-* phase_type = ['P' 'S']
|
71 |
-
| | | |-* snr = [0. 0. 7.31356192]
|
72 |
-
| | | |-* station = BEN
|
73 |
-
| | | |-* unit = 1e-6m/s
|
74 |
......
|
75 |
```
|
76 |
|
@@ -79,6 +61,7 @@ Group: / len:10000
|
|
79 |
### Requirements
|
80 |
- datasets
|
81 |
- h5py
|
|
|
82 |
- torch (for PyTorch)
|
83 |
|
84 |
### Usage
|
@@ -90,57 +73,57 @@ import torch
|
|
90 |
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
91 |
from datasets import load_dataset
|
92 |
```
|
93 |
-
We have
|
94 |
-
|
95 |
-
|
96 |
-
-
|
97 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
- `event_location`: the event location with shape `(4,)`, including latitude, longitude, depth and time
|
99 |
-
- `station_location`: the station location with shape `(
|
100 |
|
101 |
-
|
102 |
-
- `
|
103 |
-
- `phase_pick`: the probability of the phase pick with shape `(
|
104 |
-
- `
|
105 |
-
- `
|
|
|
|
|
106 |
|
107 |
-
The default configuration is `
|
108 |
```python
|
109 |
# load dataset
|
110 |
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
|
111 |
# So we recommend to directly load the dataset and convert it into iterable later
|
112 |
# The dataset is very large, so you need to wait for some time at the first time
|
113 |
|
114 |
-
# to load "
|
115 |
-
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", split="
|
116 |
# or
|
117 |
-
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="
|
118 |
|
119 |
-
# to load "
|
120 |
-
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="
|
121 |
```
|
122 |
|
123 |
-
|
124 |
-
```python
|
125 |
-
# change the 37 to the number of shards you want
|
126 |
-
_URLS = {
|
127 |
-
"NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)]
|
128 |
-
}
|
129 |
-
```
|
130 |
-
Then you can use the dataset like this (Don't forget to specify the argument `name`):
|
131 |
-
```python
|
132 |
-
# don't forget to specify the script path
|
133 |
-
quakeflow_nc = datasets.load_dataset("path_to_script/quakeflow_nc.py", split="train")
|
134 |
-
quakeflow_nc
|
135 |
-
```
|
136 |
-
|
137 |
-
#### Usage for `NCEDC`
|
138 |
Then you can change the dataset into PyTorch format iterable dataset, and view the first sample:
|
139 |
```python
|
140 |
-
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="
|
141 |
-
|
|
|
|
|
142 |
# because add examples formatting to get tensors when using the "torch" format
|
143 |
-
# has not been implemented yet, we need to manually add the formatting
|
|
|
|
|
144 |
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
145 |
try:
|
146 |
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
@@ -155,7 +138,7 @@ for example in quakeflow_nc:
|
|
155 |
print(key, example[key].shape, example[key].dtype)
|
156 |
break
|
157 |
|
158 |
-
dataloader = DataLoader(quakeflow_nc, batch_size=4)
|
159 |
|
160 |
for batch in dataloader:
|
161 |
print("\nDataloader test\n")
|
@@ -165,48 +148,35 @@ for batch in dataloader:
|
|
165 |
break
|
166 |
```
|
167 |
|
168 |
-
#### Usage for `
|
169 |
|
170 |
Then you can change the dataset into PyTorch format dataset, and view the first sample (Don't forget to reorder the keys):
|
171 |
```python
|
172 |
-
quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="
|
173 |
|
174 |
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
175 |
num_workers=4
|
176 |
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
177 |
-
# because add examples formatting to get tensors when using the "torch" format
|
178 |
-
# has not been implemented yet, we need to manually add the formatting
|
179 |
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
180 |
-
def reorder_keys(example):
|
181 |
-
example["waveform"] = example["waveform"].permute(1,2,0).contiguous()
|
182 |
-
example["phase_pick"] = example["phase_pick"].permute(1,2,0).contiguous()
|
183 |
-
return example
|
184 |
-
|
185 |
-
quakeflow_nc = quakeflow_nc.map(reorder_keys)
|
186 |
-
|
187 |
try:
|
188 |
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
189 |
except:
|
190 |
raise Exception("quakeflow_nc is not an IterableDataset")
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
batch_size=1,
|
195 |
-
num_workers=num_workers,
|
196 |
-
)
|
197 |
-
|
198 |
-
for batch in quakeflow_nc:
|
199 |
print("\nIterable test\n")
|
200 |
-
print(
|
201 |
-
for key in
|
202 |
-
print(key,
|
203 |
break
|
204 |
|
205 |
-
|
|
|
|
|
206 |
print("\nDataloader test\n")
|
207 |
print(batch.keys())
|
208 |
for key in batch.keys():
|
209 |
-
batch[key] = batch[key].squeeze(0)
|
210 |
print(key, batch[key].shape, batch[key].dtype)
|
211 |
break
|
212 |
```
|
|
|
5 |
# Quakeflow_NC
|
6 |
|
7 |
## Introduction
|
8 |
+
This dataset is part of the data (1970-2020) from [NCEDC (Northern California Earthquake Data Center)](https://ncedc.org/index.html) and is organized as several HDF5 files. The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/))
|
9 |
|
10 |
Cite the NCEDC:
|
11 |
"NCEDC (2014), Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC."
|
|
|
14 |
"Waveform data, metadata, or data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC."
|
15 |
|
16 |
```
|
17 |
+
Group: / len:16227
|
18 |
+
|- Group: /nc71111584 len:2
|
19 |
+
| |-* begin_time = 2020-01-02T07:01:19.620
|
20 |
+
| |-* depth_km = 3.69
|
21 |
+
| |-* end_time = 2020-01-02T07:03:19.620
|
22 |
+
| |-* event_id = nc71111584
|
23 |
+
| |-* event_time = 2020-01-02T07:01:48.240
|
24 |
+
| |-* event_time_index = 2862
|
25 |
+
| |-* latitude = 37.6545
|
26 |
+
| |-* longitude = -118.8798
|
27 |
+
| |-* magnitude = -0.15
|
28 |
| |-* magnitude_type = D
|
29 |
+
| |-* num_stations = 2
|
30 |
+
| |- Dataset: /nc71111584/NC.MCB..HH (shape:(3, 12000))
|
31 |
| | |- (dtype=float32)
|
32 |
+
| | | |-* azimuth = 233.0
|
33 |
+
| | | |-* component = ['E' 'N' 'Z']
|
34 |
+
| | | |-* distance_km = 1.9
|
35 |
| | | |-* dt_s = 0.01
|
36 |
+
| | | |-* elevation_m = 2391.0
|
37 |
+
| | | |-* emergence_angle = 159.0
|
38 |
+
| | | |-* event_id = ['nc71111584' 'nc71111584']
|
39 |
+
| | | |-* latitude = 37.6444
|
40 |
| | | |-* location =
|
41 |
+
| | | |-* longitude = -118.8968
|
42 |
| | | |-* network = NC
|
43 |
+
| | | |-* phase_index = [3000 3101]
|
44 |
| | | |-* phase_polarity = ['U' 'N']
|
45 |
+
| | | |-* phase_remark = ['IP' 'ES']
|
46 |
+
| | | |-* phase_score = [1 2]
|
47 |
+
| | | |-* phase_time = ['2020-01-02T07:01:49.620' '2020-01-02T07:01:50.630']
|
48 |
| | | |-* phase_type = ['P' 'S']
|
49 |
+
| | | |-* snr = [2.82143 3.055604 1.8412642]
|
50 |
+
| | | |-* station = MCB
|
51 |
| | | |-* unit = 1e-6m/s
|
52 |
+
| |- Dataset: /nc71111584/NC.MCB..HN (shape:(3, 12000))
|
53 |
| | |- (dtype=float32)
|
54 |
+
| | | |-* azimuth = 233.0
|
55 |
+
| | | |-* component = ['E' 'N' 'Z']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
......
|
57 |
```
|
58 |
|
|
|
61 |
### Requirements
|
62 |
- datasets
|
63 |
- h5py
|
64 |
+
- fsspec
|
65 |
- torch (for PyTorch)
|
66 |
|
67 |
### Usage
|
|
|
73 |
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
74 |
from datasets import load_dataset
|
75 |
```
|
76 |
+
We have 6 configurations for the dataset:
|
77 |
+
- "station"
|
78 |
+
- "event"
|
79 |
+
- "station_train"
|
80 |
+
- "event_train"
|
81 |
+
- "station_test"
|
82 |
+
- "event_test"
|
83 |
+
|
84 |
+
"station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
|
85 |
+
|
86 |
+
The sample of `station` is a dictionary with the following keys:
|
87 |
+
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
|
88 |
+
- `phase_pick`: the probability of the phase pick with shape `(3, nt)`, the first dimension is noise, P and S
|
89 |
- `event_location`: the event location with shape `(4,)`, including latitude, longitude, depth and time
|
90 |
+
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
|
91 |
|
92 |
+
The sample of `event` is a dictionary with the following keys:
|
93 |
+
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
|
94 |
+
- `phase_pick`: the probability of the phase pick with shape `(n_station, 3, nt)`, the first dimension is noise, P and S
|
95 |
+
- `event_center`: the probability of the event time with shape `(n_station, feature_nt)`, default feature time length is 512
|
96 |
+
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 4, feature_nt)`
|
97 |
+
- `event_location_mask`: the probability mask of the event time with shape `(n_station, feature_nt)`
|
98 |
+
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
|
99 |
|
100 |
+
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
|
101 |
```python
|
102 |
# load dataset
|
103 |
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
|
104 |
# So we recommend to directly load the dataset and convert it into iterable later
|
105 |
# The dataset is very large, so you need to wait for some time at the first time
|
106 |
|
107 |
+
# to load "station_test" with test split
|
108 |
+
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", split="test")
|
109 |
# or
|
110 |
+
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
111 |
|
112 |
+
# to load "event" with train split
|
113 |
+
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="event", split="train")
|
114 |
```
|
115 |
|
116 |
+
#### Usage for `station`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
Then you can change the dataset into PyTorch format iterable dataset, and view the first sample:
|
118 |
```python
|
119 |
+
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
120 |
+
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
121 |
+
num_workers=4
|
122 |
+
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
123 |
# because add examples formatting to get tensors when using the "torch" format
|
124 |
+
# has not been implemented yet, we need to manually add the formatting when using iterable dataset
|
125 |
+
# if you want to use dataset directly, just use
|
126 |
+
# quakeflow_nc.with_format("torch")
|
127 |
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
128 |
try:
|
129 |
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
|
|
138 |
print(key, example[key].shape, example[key].dtype)
|
139 |
break
|
140 |
|
141 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=4, num_workers=num_workers)
|
142 |
|
143 |
for batch in dataloader:
|
144 |
print("\nDataloader test\n")
|
|
|
148 |
break
|
149 |
```
|
150 |
|
151 |
+
#### Usage for `event`
|
152 |
|
153 |
Then you can change the dataset into PyTorch format dataset, and view the first sample (Don't forget to reorder the keys):
|
154 |
```python
|
155 |
+
quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="test", name="event_test")
|
156 |
|
157 |
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
158 |
num_workers=4
|
159 |
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
|
|
|
|
160 |
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
try:
|
162 |
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
163 |
except:
|
164 |
raise Exception("quakeflow_nc is not an IterableDataset")
|
165 |
|
166 |
+
# print the first sample of the iterable dataset
|
167 |
+
for example in quakeflow_nc:
|
|
|
|
|
|
|
|
|
|
|
168 |
print("\nIterable test\n")
|
169 |
+
print(example.keys())
|
170 |
+
for key in example.keys():
|
171 |
+
print(key, example[key].shape, example[key].dtype)
|
172 |
break
|
173 |
|
174 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=1, num_workers=num_workers)
|
175 |
+
|
176 |
+
for batch in dataloader:
|
177 |
print("\nDataloader test\n")
|
178 |
print(batch.keys())
|
179 |
for key in batch.keys():
|
|
|
180 |
print(key, batch[key].shape, batch[key].dtype)
|
181 |
break
|
182 |
```
|
quakeflow_nc.py
CHANGED
@@ -153,25 +153,30 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
153 |
or (self.config.name == "station_train")
|
154 |
or (self.config.name == "station_test")
|
155 |
):
|
156 |
-
features
|
157 |
{
|
158 |
-
"
|
159 |
-
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype=
|
160 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
161 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
162 |
-
}
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
167 |
{
|
168 |
-
"
|
169 |
-
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype=
|
170 |
-
"
|
|
|
|
|
171 |
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
172 |
}
|
173 |
)
|
174 |
-
|
175 |
return datasets.DatasetInfo(
|
176 |
# This is the description that will appear on the datasets page.
|
177 |
description=_DESCRIPTION,
|
@@ -262,9 +267,9 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
262 |
attrs["depth_km"],
|
263 |
attrs["event_time_index"],
|
264 |
]
|
265 |
-
|
266 |
for i, sta_id in enumerate(station_ids):
|
267 |
-
waveforms[:, : self.nt] = event[sta_id][:, :
|
268 |
# waveforms[:, : self.nt] = event[sta_id][: self.nt, :].T
|
269 |
attrs = event[sta_id].attrs
|
270 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
@@ -273,44 +278,111 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
273 |
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
274 |
|
275 |
yield f"{event_id}/{sta_id}", {
|
276 |
-
"
|
277 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
278 |
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
279 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
280 |
}
|
281 |
|
|
|
282 |
elif (
|
283 |
(self.config.name == "event")
|
284 |
or (self.config.name == "event_train")
|
285 |
or (self.config.name == "event_test")
|
286 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
288 |
phase_pick = np.zeros_like(waveforms)
|
289 |
-
|
290 |
-
event_location = [
|
291 |
-
|
292 |
-
|
293 |
-
attrs["depth_km"],
|
294 |
-
attrs["event_time_index"],
|
295 |
-
]
|
296 |
-
station_location = []
|
297 |
|
298 |
for i, sta_id in enumerate(station_ids):
|
299 |
-
|
300 |
-
|
301 |
attrs = event[sta_id].attrs
|
302 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
303 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
304 |
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
yield event_id, {
|
310 |
-
"
|
311 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
312 |
-
"
|
313 |
-
"
|
|
|
|
|
314 |
}
|
315 |
|
316 |
|
|
|
153 |
or (self.config.name == "station_train")
|
154 |
or (self.config.name == "station_test")
|
155 |
):
|
156 |
+
features=datasets.Features(
|
157 |
{
|
158 |
+
"data": datasets.Array2D(shape=(3, self.nt), dtype='float32'),
|
159 |
+
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype='float32'),
|
160 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
161 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
162 |
+
})
|
163 |
+
|
164 |
+
elif (
|
165 |
+
(self.config.name == "event")
|
166 |
+
or (self.config.name == "event_train")
|
167 |
+
or (self.config.name == "event_test")
|
168 |
+
):
|
169 |
+
features=datasets.Features(
|
170 |
{
|
171 |
+
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'),
|
172 |
+
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'),
|
173 |
+
"event_center" : datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'),
|
174 |
+
"event_location": datasets.Array3D(shape=(None, 4, self.feature_nt), dtype='float32'),
|
175 |
+
"event_location_mask": datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'),
|
176 |
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
177 |
}
|
178 |
)
|
179 |
+
|
180 |
return datasets.DatasetInfo(
|
181 |
# This is the description that will appear on the datasets page.
|
182 |
description=_DESCRIPTION,
|
|
|
267 |
attrs["depth_km"],
|
268 |
attrs["event_time_index"],
|
269 |
]
|
270 |
+
|
271 |
for i, sta_id in enumerate(station_ids):
|
272 |
+
waveforms[:, : self.nt] = event[sta_id][:, :self.nt]
|
273 |
# waveforms[:, : self.nt] = event[sta_id][: self.nt, :].T
|
274 |
attrs = event[sta_id].attrs
|
275 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
|
|
278 |
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
279 |
|
280 |
yield f"{event_id}/{sta_id}", {
|
281 |
+
"data": torch.from_numpy(waveforms).float(),
|
282 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
283 |
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
284 |
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
285 |
}
|
286 |
|
287 |
+
|
288 |
elif (
|
289 |
(self.config.name == "event")
|
290 |
or (self.config.name == "event_train")
|
291 |
or (self.config.name == "event_test")
|
292 |
):
|
293 |
+
event_attrs = event.attrs
|
294 |
+
|
295 |
+
# avoid stations with P arrival equals S arrival
|
296 |
+
is_sick = False
|
297 |
+
for sta_id in station_ids:
|
298 |
+
attrs = event[sta_id].attrs
|
299 |
+
if attrs["phase_index"][attrs["phase_type"] == "P"] == attrs["phase_index"][attrs["phase_type"] == "S"]:
|
300 |
+
is_sick = True
|
301 |
+
break
|
302 |
+
if is_sick:
|
303 |
+
continue
|
304 |
+
|
305 |
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
306 |
phase_pick = np.zeros_like(waveforms)
|
307 |
+
event_center = np.zeros([len(station_ids), self.nt])
|
308 |
+
event_location = np.zeros([len(station_ids), 4, self.nt])
|
309 |
+
event_location_mask = np.zeros([len(station_ids), self.nt])
|
310 |
+
station_location = np.zeros([len(station_ids), 3])
|
|
|
|
|
|
|
|
|
311 |
|
312 |
for i, sta_id in enumerate(station_ids):
|
313 |
+
# trace_id = event_id + "/" + sta_id
|
314 |
+
waveforms[i, :, :] = event[sta_id][:, :self.nt]
|
315 |
attrs = event[sta_id].attrs
|
316 |
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
|
317 |
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
|
318 |
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt)
|
319 |
+
|
320 |
+
## TODO: how to deal with multiple phases
|
321 |
+
# center = (attrs["phase_index"][::2] + attrs["phase_index"][1::2])/2.0
|
322 |
+
## assuming only one event with both P and S picks
|
323 |
+
c0 = ((p_picks) + (s_picks)) / 2.0 # phase center
|
324 |
+
c0_width = ((s_picks - p_picks) * self.sampling_rate / 200.0).max() if p_picks!=s_picks else 50
|
325 |
+
dx = round(
|
326 |
+
(event_attrs["longitude"] - attrs["longitude"])
|
327 |
+
* np.cos(np.radians(event_attrs["latitude"]))
|
328 |
+
* self.degree2km,
|
329 |
+
2,
|
330 |
)
|
331 |
+
dy = round(
|
332 |
+
(event_attrs["latitude"] - attrs["latitude"])
|
333 |
+
* self.degree2km,
|
334 |
+
2,
|
335 |
+
)
|
336 |
+
dz = round(
|
337 |
+
event_attrs["depth_km"] + attrs["elevation_m"] / 1e3,
|
338 |
+
2,
|
339 |
+
)
|
340 |
+
|
341 |
+
event_center[i, :] = generate_label(
|
342 |
+
[
|
343 |
+
# [c0 / self.feature_scale],
|
344 |
+
c0,
|
345 |
+
],
|
346 |
+
label_width=[
|
347 |
+
c0_width,
|
348 |
+
],
|
349 |
+
# label_width=[
|
350 |
+
# 10,
|
351 |
+
# ],
|
352 |
+
# nt=self.feature_nt,
|
353 |
+
nt=self.nt,
|
354 |
+
)[1, :]
|
355 |
+
mask = event_center[i, :] >= 0.5
|
356 |
+
event_location[i, 0, :] = (
|
357 |
+
np.arange(self.nt) - event_attrs["event_time_index"]
|
358 |
+
) / self.sampling_rate
|
359 |
+
# event_location[0, :, i] = (np.arange(self.feature_nt) - 3000 / self.feature_scale) / self.sampling_rate
|
360 |
+
# print(event_location[i, 1:, mask].shape, event_location.shape, event_location[i][1:, mask].shape)
|
361 |
+
event_location[i][1:, mask] = np.array([dx, dy, dz])[:, np.newaxis]
|
362 |
+
event_location_mask[i, :] = mask
|
363 |
+
|
364 |
+
## station location
|
365 |
+
station_location[i, 0] = round(
|
366 |
+
attrs["longitude"]
|
367 |
+
* np.cos(np.radians(attrs["latitude"]))
|
368 |
+
* self.degree2km,
|
369 |
+
2,
|
370 |
+
)
|
371 |
+
station_location[i, 1] = round(attrs["latitude"] * self.degree2km, 2)
|
372 |
+
station_location[i, 2] = round(-attrs["elevation_m"]/1e3, 2)
|
373 |
+
|
374 |
+
std = np.std(waveforms, axis=1, keepdims=True)
|
375 |
+
std[std == 0] = 1.0
|
376 |
+
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
|
377 |
+
waveforms = waveforms.astype(np.float32)
|
378 |
|
379 |
yield event_id, {
|
380 |
+
"data": torch.from_numpy(waveforms).float(),
|
381 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
382 |
+
"event_center": torch.from_numpy(event_center[:, ::self.feature_scale]).float(),
|
383 |
+
"event_location": torch.from_numpy(event_location[:, :, ::self.feature_scale]).float(),
|
384 |
+
"event_location_mask": torch.from_numpy(event_location_mask[:, ::self.feature_scale]).float(),
|
385 |
+
"station_location": torch.from_numpy(station_location).float(),
|
386 |
}
|
387 |
|
388 |
|