sasha HF staff commited on
Commit
2f92814
·
verified ·
1 Parent(s): 35341ce

Upload folder using huggingface_hub

Browse files
Files changed (39) hide show
  1. automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/config.yaml +94 -0
  2. automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/hydra.yaml +175 -0
  3. automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/overrides.yaml +2 -0
  4. automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/cli.log +0 -0
  5. automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/error.log +7 -0
  6. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/config.yaml +94 -0
  7. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/hydra.yaml +175 -0
  8. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/overrides.yaml +2 -0
  9. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/benchmark_report.json +107 -0
  10. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/cli.log +113 -0
  11. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/error.log +170 -0
  12. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/experiment_config.json +107 -0
  13. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/forward_codecarbon.json +33 -0
  14. sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/preprocess_codecarbon.json +33 -0
  15. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/config.yaml +94 -0
  16. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/hydra.yaml +175 -0
  17. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/overrides.yaml +2 -0
  18. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/benchmark_report.json +107 -0
  19. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/cli.log +113 -0
  20. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/error.log +178 -0
  21. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/experiment_config.json +107 -0
  22. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/forward_codecarbon.json +33 -0
  23. sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/preprocess_codecarbon.json +33 -0
  24. text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/config.yaml +96 -0
  25. text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/hydra.yaml +175 -0
  26. text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/overrides.yaml +2 -0
  27. text_generation/facebook/opt-125m/2024-12-06-11-38-28/benchmark_report.json +203 -0
  28. text_generation/facebook/opt-125m/2024-12-06-11-38-28/cli.log +188 -0
  29. text_generation/facebook/opt-125m/2024-12-06-11-38-28/error.log +0 -0
  30. text_generation/facebook/opt-125m/2024-12-06-11-38-28/experiment_config.json +110 -0
  31. text_generation/facebook/opt-125m/2024-12-06-11-38-28/generate_codecarbon.json +33 -0
  32. text_generation/facebook/opt-125m/2024-12-06-11-38-28/prefill_codecarbon.json +33 -0
  33. text_generation/facebook/opt-125m/2024-12-06-11-38-28/preprocess_codecarbon.json +33 -0
  34. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/config.yaml +96 -0
  35. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/hydra.yaml +175 -0
  36. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/overrides.yaml +2 -0
  37. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/cli.log +17 -0
  38. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/error.log +50 -0
  39. text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/experiment_config.json +110 -0
automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: automatic-speech-recognition
6
+ model: pyannote/speaker-diarization
7
+ processor: pyannote/speaker-diarization
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/ASR
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: automatic_speech_recognition
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21
4
+ sweep:
5
+ dir: runs/${experiment_name}/${backend.model}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=pyannote/speaker-diarization
125
+ - backend.processor=pyannote/speaker-diarization
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=pyannote/speaker-diarization,backend.processor=pyannote/speaker-diarization
130
+ id: ???
131
+ num: ???
132
+ config_name: automatic_speech_recognition
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=pyannote/speaker-diarization
2
+ - backend.processor=pyannote/speaker-diarization
automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/cli.log ADDED
File without changes
automatic_speech_recognition/pyannote/speaker-diarization/2024-12-06-11-54-21/error.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Error executing job with overrides: ['backend.model=pyannote/speaker-diarization', 'backend.processor=pyannote/speaker-diarization']
2
+ Traceback (most recent call last):
3
+ File "/optimum-benchmark/optimum_benchmark/cli.py", line 62, in benchmark_cli
4
+ experiment_config: ExperimentConfig = OmegaConf.to_object(experiment_config)
5
+ ValueError: `library` must be either `transformers`, `diffusers` or `timm`, but got pyannote-audio
6
+
7
+ Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: sentence-similarity
6
+ model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
7
+ processor: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
8
+ library: transformers
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/sentence_similarity
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: sentence_similarity_udever-bloom-7b1
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=sentence-transformers/multi-qa-MiniLM-L6-cos-v1
125
+ - backend.processor=sentence-transformers/multi-qa-MiniLM-L6-cos-v1
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=sentence-transformers/multi-qa-MiniLM-L6-cos-v1,backend.processor=sentence-transformers/multi-qa-MiniLM-L6-cos-v1
130
+ id: ???
131
+ num: ???
132
+ config_name: sentence_similarity
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=sentence-transformers/multi-qa-MiniLM-L6-cos-v1
2
+ - backend.processor=sentence-transformers/multi-qa-MiniLM-L6-cos-v1
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/benchmark_report.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "forward": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 3.275373952828685e-05,
9
+ "ram": 2.625137697894165e-07,
10
+ "gpu": 6.466513506548921e-05,
11
+ "total": 9.768138836356548e-05
12
+ },
13
+ "efficiency": {
14
+ "unit": "samples/kWh",
15
+ "value": 10237364.729891507
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 3.643965493700105e-05,
21
+ "ram": 2.9199692918469024e-07,
22
+ "gpu": 7.215922439485212e-05,
23
+ "total": 0.00010889087626103786
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 3.628243698783789e-05,
28
+ "ram": 2.908171471927138e-07,
29
+ "gpu": 7.23722801190263e-05,
30
+ "total": 0.0001089455342540569
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 3.624044489932001e-05,
35
+ "ram": 2.9046338093741353e-07,
36
+ "gpu": 7.244672462469737e-05,
37
+ "total": 0.0001089776329049548
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 3.694559903071626e-05,
42
+ "ram": 2.9616714317705344e-07,
43
+ "gpu": 7.22250577798178e-05,
44
+ "total": 0.0001094668239537111
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 3.618578909558387e-05,
49
+ "ram": 2.8997214067946837e-07,
50
+ "gpu": 7.248089131728364e-05,
51
+ "total": 0.00010895665255354701
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 3.635225530290175e-05,
56
+ "ram": 2.9141810238539734e-07,
57
+ "gpu": 7.01256116570903e-05,
58
+ "total": 0.0001067692850623775
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 3.680150384397066e-05,
70
+ "ram": 2.950214029441229e-07,
71
+ "gpu": 7.227394670827891e-05,
72
+ "total": 0.00010937047195519359
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 3.6118197154832575e-05,
77
+ "ram": 2.894922433755514e-07,
78
+ "gpu": 7.249589133095924e-05,
79
+ "total": 0.00010890358072916737
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 3.6171514030704384e-05,
84
+ "ram": 2.897892080177542e-07,
85
+ "gpu": 7.007172272288642e-05,
86
+ "total": 0.00010653302596160875
87
+ }
88
+ ]
89
+ },
90
+ "preprocess": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 1.929911376969863e-06,
97
+ "ram": 1.184183714824478e-08,
98
+ "gpu": 3.919725356738013e-06,
99
+ "total": 5.861478570856121e-06
100
+ },
101
+ "efficiency": {
102
+ "unit": "samples/kWh",
103
+ "value": 170605417.71356183
104
+ },
105
+ "measures": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/cli.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-06 11:54:27,873][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-06 11:54:27,874][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-06 11:54:27,885][device-isolation][INFO] - + Launched device(s) isolation process 850
4
+ [2024-12-06 11:54:27,886][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-12-06 11:54:27,892][process][INFO] - + Launched benchmark in isolated process 851.
6
+ [PROC-0][2024-12-06 11:54:30,508][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-12-06 11:54:31,453][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-12-06 11:54:31,453][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-12-06 11:54:31,916][pytorch][INFO] - + Using AutoModel class AutoModel
10
+ [PROC-0][2024-12-06 11:54:31,916][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-12-06 11:54:31,916][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-12-06 11:54:31,916][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-12-06 11:54:31,917][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-12-06 11:54:31,917][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-12-06 11:54:31,919][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-12-06 11:54:31,919][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-12-06 11:54:31,920][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-12-06 11:54:31,920][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-12-06 11:54:32,211][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-12-06 11:54:32,216][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-12-06 11:54:32,217][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-12-06 11:54:32,926][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-12-06 11:54:32,927][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-12-06 11:54:37,107][energy_star][INFO] - + Preprocessing dataset
25
+ [PROC-0][2024-12-06 11:54:37,271][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
26
+ [PROC-0][2024-12-06 11:54:37,272][energy_star][INFO] - + Preparing backend for Inference
27
+ [PROC-0][2024-12-06 11:54:37,272][energy_star][INFO] - + Initialising dataloader
28
+ [PROC-0][2024-12-06 11:54:37,272][energy_star][INFO] - + Warming up backend for Inference
29
+ [PROC-0][2024-12-06 11:54:37,922][energy_star][INFO] - + Running Inference energy tracking for 10 iterations
30
+ [PROC-0][2024-12-06 11:54:37,923][energy_star][INFO] - + Iteration 1/10
31
+ [PROC-0][2024-12-06 11:54:41,010][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
32
+ [PROC-0][2024-12-06 11:54:41,010][energy_star][INFO] - + Iteration 2/10
33
+ [PROC-0][2024-12-06 11:54:44,084][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
34
+ [PROC-0][2024-12-06 11:54:44,085][energy_star][INFO] - + Iteration 3/10
35
+ [PROC-0][2024-12-06 11:54:47,155][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
36
+ [PROC-0][2024-12-06 11:54:47,156][energy_star][INFO] - + Iteration 4/10
37
+ [PROC-0][2024-12-06 11:54:50,286][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
38
+ [PROC-0][2024-12-06 11:54:50,286][energy_star][INFO] - + Iteration 5/10
39
+ [PROC-0][2024-12-06 11:54:53,352][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
40
+ [PROC-0][2024-12-06 11:54:53,352][energy_star][INFO] - + Iteration 6/10
41
+ [PROC-0][2024-12-06 11:54:56,432][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
42
+ [PROC-0][2024-12-06 11:54:56,432][energy_star][INFO] - + Iteration 7/10
43
+ [PROC-0][2024-12-06 11:54:59,670][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
44
+ [PROC-0][2024-12-06 11:54:59,671][energy_star][INFO] - + Iteration 8/10
45
+ [PROC-0][2024-12-06 11:55:02,789][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
46
+ [PROC-0][2024-12-06 11:55:02,789][energy_star][INFO] - + Iteration 9/10
47
+ [PROC-0][2024-12-06 11:55:05,849][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
48
+ [PROC-0][2024-12-06 11:55:05,850][energy_star][INFO] - + Iteration 10/10
49
+ [PROC-0][2024-12-06 11:55:08,914][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
50
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + forward energy consumption:
51
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + CPU: 0.000033 (kWh)
52
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + GPU: 0.000065 (kWh)
53
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + RAM: 0.000000 (kWh)
54
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + total: 0.000098 (kWh)
55
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + forward_iteration_1 energy consumption:
56
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + CPU: 0.000036 (kWh)
57
+ [PROC-0][2024-12-06 11:55:08,915][energy][INFO] - + GPU: 0.000072 (kWh)
58
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + RAM: 0.000000 (kWh)
59
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + total: 0.000109 (kWh)
60
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + forward_iteration_2 energy consumption:
61
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + CPU: 0.000036 (kWh)
62
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + GPU: 0.000072 (kWh)
63
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + RAM: 0.000000 (kWh)
64
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + total: 0.000109 (kWh)
65
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + forward_iteration_3 energy consumption:
66
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + CPU: 0.000036 (kWh)
67
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + GPU: 0.000072 (kWh)
68
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + RAM: 0.000000 (kWh)
69
+ [PROC-0][2024-12-06 11:55:08,916][energy][INFO] - + total: 0.000109 (kWh)
70
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + forward_iteration_4 energy consumption:
71
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + CPU: 0.000037 (kWh)
72
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + GPU: 0.000072 (kWh)
73
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + RAM: 0.000000 (kWh)
74
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + total: 0.000109 (kWh)
75
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + forward_iteration_5 energy consumption:
76
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + CPU: 0.000036 (kWh)
77
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + GPU: 0.000072 (kWh)
78
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + RAM: 0.000000 (kWh)
79
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + total: 0.000109 (kWh)
80
+ [PROC-0][2024-12-06 11:55:08,917][energy][INFO] - + forward_iteration_6 energy consumption:
81
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + CPU: 0.000036 (kWh)
82
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + GPU: 0.000070 (kWh)
83
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + RAM: 0.000000 (kWh)
84
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + total: 0.000107 (kWh)
85
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + forward_iteration_7 energy consumption:
86
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + CPU: 0.000000 (kWh)
87
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + GPU: 0.000000 (kWh)
88
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + RAM: 0.000000 (kWh)
89
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + total: 0.000000 (kWh)
90
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + forward_iteration_8 energy consumption:
91
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + CPU: 0.000037 (kWh)
92
+ [PROC-0][2024-12-06 11:55:08,918][energy][INFO] - + GPU: 0.000072 (kWh)
93
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + RAM: 0.000000 (kWh)
94
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + total: 0.000109 (kWh)
95
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + forward_iteration_9 energy consumption:
96
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + CPU: 0.000036 (kWh)
97
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + GPU: 0.000072 (kWh)
98
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + RAM: 0.000000 (kWh)
99
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + total: 0.000109 (kWh)
100
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + forward_iteration_10 energy consumption:
101
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + CPU: 0.000036 (kWh)
102
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + GPU: 0.000070 (kWh)
103
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + RAM: 0.000000 (kWh)
104
+ [PROC-0][2024-12-06 11:55:08,919][energy][INFO] - + total: 0.000107 (kWh)
105
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + preprocess energy consumption:
106
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + CPU: 0.000002 (kWh)
107
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + GPU: 0.000004 (kWh)
108
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + total: 0.000006 (kWh)
110
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + forward energy efficiency: 10237364.729892 (samples/kWh)
111
+ [PROC-0][2024-12-06 11:55:08,920][energy][INFO] - + preprocess energy efficiency: 170605417.713562 (samples/kWh)
112
+ [2024-12-06 11:55:09,574][device-isolation][INFO] - + Closing device(s) isolation process...
113
+ [2024-12-06 11:55:09,621][datasets][INFO] - PyTorch version 2.4.0 available.
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/error.log ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/1000 [00:00<?, ?it/s]
1
  3%|▎ | 31/1000 [00:00<00:03, 302.75it/s]
2
  6%|▌ | 62/1000 [00:00<00:03, 306.90it/s]
3
  9%|▉ | 94/1000 [00:00<00:02, 310.23it/s]
4
  13%|█▎ | 127/1000 [00:00<00:02, 316.38it/s]
5
  16%|█▌ | 160/1000 [00:00<00:02, 320.32it/s]
6
  19%|█▉ | 193/1000 [00:00<00:02, 323.35it/s]
7
  23%|██▎ | 226/1000 [00:00<00:02, 325.31it/s]
8
  26%|██▌ | 259/1000 [00:00<00:02, 323.69it/s]
9
  29%|██▉ | 292/1000 [00:00<00:02, 324.77it/s]
10
  32%|███▎ | 325/1000 [00:01<00:02, 324.61it/s]
11
  36%|███▌ | 358/1000 [00:01<00:01, 325.92it/s]
12
  39%|███▉ | 391/1000 [00:01<00:01, 327.14it/s]
13
  42%|████▏ | 424/1000 [00:01<00:01, 327.35it/s]
14
  46%|████▌ | 457/1000 [00:01<00:01, 323.07it/s]
15
  49%|████▉ | 490/1000 [00:01<00:01, 323.89it/s]
16
  52%|█████▏ | 523/1000 [00:01<00:01, 325.70it/s]
17
  56%|█████▌ | 557/1000 [00:01<00:01, 327.08it/s]
18
  59%|█████▉ | 591/1000 [00:01<00:01, 327.96it/s]
19
  62%|██████▏ | 624/1000 [00:01<00:01, 328.16it/s]
20
  66%|██████▌ | 657/1000 [00:02<00:01, 326.97it/s]
21
  69%|██████▉ | 691/1000 [00:02<00:00, 328.18it/s]
22
  72%|███████▏ | 724/1000 [00:02<00:00, 328.71it/s]
23
  76%|███████▌ | 757/1000 [00:02<00:00, 327.26it/s]
24
  79%|███████▉ | 790/1000 [00:02<00:00, 324.90it/s]
25
  82%|████████▏ | 823/1000 [00:02<00:00, 323.04it/s]
26
  86%|████████▌ | 857/1000 [00:02<00:00, 325.26it/s]
27
  89%|████████▉ | 891/1000 [00:02<00:00, 326.77it/s]
28
  92%|█████████▏| 924/1000 [00:02<00:00, 327.60it/s]
29
  96%|█████████▌| 957/1000 [00:02<00:00, 326.58it/s]
30
  99%|█████████▉| 990/1000 [00:03<00:00, 325.72it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  0%| | 0/1000 [00:00<?, ?it/s]
32
  3%|▎ | 33/1000 [00:00<00:02, 324.05it/s]
33
  7%|▋ | 66/1000 [00:00<00:02, 325.59it/s]
34
  10%|▉ | 99/1000 [00:00<00:02, 326.55it/s]
35
  13%|█▎ | 132/1000 [00:00<00:02, 326.44it/s]
36
  16%|█▋ | 165/1000 [00:00<00:02, 326.36it/s]
37
  20%|█▉ | 198/1000 [00:00<00:02, 326.33it/s]
38
  23%|██▎ | 231/1000 [00:00<00:02, 326.59it/s]
39
  26%|██▋ | 264/1000 [00:00<00:02, 326.58it/s]
40
  30%|██▉ | 297/1000 [00:00<00:02, 326.71it/s]
41
  33%|███▎ | 330/1000 [00:01<00:02, 326.74it/s]
42
  36%|███▋ | 363/1000 [00:01<00:01, 326.64it/s]
43
  40%|███▉ | 396/1000 [00:01<00:01, 326.67it/s]
44
  43%|████▎ | 429/1000 [00:01<00:01, 326.86it/s]
45
  46%|████▌ | 462/1000 [00:01<00:01, 326.92it/s]
46
  50%|████▉ | 495/1000 [00:01<00:01, 327.68it/s]
47
  53%|█████▎ | 528/1000 [00:01<00:01, 327.45it/s]
48
  56%|█████▌ | 561/1000 [00:01<00:01, 327.30it/s]
49
  59%|█████▉ | 594/1000 [00:01<00:01, 326.96it/s]
50
  63%|██████▎ | 627/1000 [00:01<00:01, 326.89it/s]
51
  66%|██████▌ | 660/1000 [00:02<00:01, 327.56it/s]
52
  69%|██████▉ | 693/1000 [00:02<00:00, 327.55it/s]
53
  73%|███████▎ | 726/1000 [00:02<00:00, 326.08it/s]
54
  76%|███████▌ | 759/1000 [00:02<00:00, 323.88it/s]
55
  79%|███████▉ | 792/1000 [00:02<00:00, 323.71it/s]
56
  82%|████████▎ | 825/1000 [00:02<00:00, 321.71it/s]
57
  86%|████████▌ | 858/1000 [00:02<00:00, 323.15it/s]
58
  89%|████████▉ | 891/1000 [00:02<00:00, 324.34it/s]
59
  92%|█████████▏| 924/1000 [00:02<00:00, 325.15it/s]
60
  96%|█████████▌| 957/1000 [00:02<00:00, 325.70it/s]
61
  99%|█████████▉| 990/1000 [00:03<00:00, 325.56it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  0%| | 0/1000 [00:00<?, ?it/s]
63
  3%|▎ | 33/1000 [00:00<00:02, 323.34it/s]
64
  7%|▋ | 66/1000 [00:00<00:02, 322.81it/s]
65
  10%|▉ | 99/1000 [00:00<00:02, 324.69it/s]
66
  13%|█▎ | 132/1000 [00:00<00:02, 322.64it/s]
67
  16%|█▋ | 165/1000 [00:00<00:02, 323.95it/s]
68
  20%|█▉ | 198/1000 [00:00<00:02, 325.02it/s]
69
  23%|██▎ | 231/1000 [00:00<00:02, 325.76it/s]
70
  26%|██▋ | 264/1000 [00:00<00:02, 326.10it/s]
71
  30%|██▉ | 297/1000 [00:00<00:02, 325.82it/s]
72
  33%|███▎ | 330/1000 [00:01<00:02, 326.53it/s]
73
  36%|███▋ | 363/1000 [00:01<00:01, 326.75it/s]
74
  40%|███▉ | 396/1000 [00:01<00:01, 326.79it/s]
75
  43%|████▎ | 429/1000 [00:01<00:01, 326.82it/s]
76
  46%|████▌ | 462/1000 [00:01<00:01, 326.10it/s]
77
  50%|████▉ | 495/1000 [00:01<00:01, 326.40it/s]
78
  53%|█████▎ | 528/1000 [00:01<00:01, 326.82it/s]
79
  56%|█████▌ | 561/1000 [00:01<00:01, 326.92it/s]
80
  59%|█████▉ | 594/1000 [00:01<00:01, 327.04it/s]
81
  63%|██████▎ | 627/1000 [00:01<00:01, 326.93it/s]
82
  66%|██████▌ | 660/1000 [00:02<00:01, 326.86it/s]
83
  69%|██████▉ | 693/1000 [00:02<00:00, 325.20it/s]
84
  73%|███████▎ | 726/1000 [00:02<00:00, 326.35it/s]
85
  76%|███████▌ | 759/1000 [00:02<00:00, 327.29it/s]
86
  79%|███████▉ | 792/1000 [00:02<00:00, 327.55it/s]
87
  83%|████████▎ | 826/1000 [00:02<00:00, 328.32it/s]
88
  86%|████████▌ | 860/1000 [00:02<00:00, 328.90it/s]
89
  89%|████████▉ | 894/1000 [00:02<00:00, 329.09it/s]
90
  93%|█████████▎| 927/1000 [00:02<00:00, 327.79it/s]
91
  96%|█████████▌| 960/1000 [00:02<00:00, 327.29it/s]
92
  99%|█████████▉| 993/1000 [00:03<00:00, 325.73it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  0%| | 0/1000 [00:00<?, ?it/s]
94
  3%|▎ | 33/1000 [00:00<00:02, 326.36it/s]
95
  7%|▋ | 66/1000 [00:00<00:02, 319.32it/s]
96
  10%|▉ | 98/1000 [00:00<00:02, 318.16it/s]
97
  13%|█▎ | 131/1000 [00:00<00:02, 319.01it/s]
98
  16%|█▋ | 164/1000 [00:00<00:02, 319.73it/s]
99
  20%|█▉ | 197/1000 [00:00<00:02, 320.14it/s]
100
  23%|██▎ | 230/1000 [00:00<00:02, 318.02it/s]
101
  26%|██▌ | 262/1000 [00:00<00:02, 317.41it/s]
102
  30%|██▉ | 295/1000 [00:00<00:02, 318.40it/s]
103
  33%|███▎ | 327/1000 [00:01<00:02, 318.88it/s]
104
  36%|███▌ | 360/1000 [00:01<00:02, 319.35it/s]
105
  39%|███▉ | 392/1000 [00:01<00:01, 319.26it/s]
106
  42%|████▏ | 424/1000 [00:01<00:01, 319.43it/s]
107
  46%|████▌ | 456/1000 [00:01<00:01, 319.41it/s]
108
  49%|████▉ | 489/1000 [00:01<00:01, 319.94it/s]
109
  52%|█████▏ | 522/1000 [00:01<00:01, 320.30it/s]
110
  56%|█████▌ | 555/1000 [00:01<00:01, 320.62it/s]
111
  59%|█████▉ | 588/1000 [00:01<00:01, 320.43it/s]
112
  62%|██████▏ | 621/1000 [00:01<00:01, 320.33it/s]
113
  65%|██████▌ | 654/1000 [00:02<00:01, 319.72it/s]
114
  69%|██████▊ | 686/1000 [00:02<00:00, 319.08it/s]
115
  72%|███████▏ | 718/1000 [00:02<00:00, 319.15it/s]
116
  75%|███████▌ | 750/1000 [00:02<00:00, 319.29it/s]
117
  78%|███████▊ | 783/1000 [00:02<00:00, 320.01it/s]
118
  82%|████████▏ | 816/1000 [00:02<00:00, 319.36it/s]
119
  85%|████████▍ | 849/1000 [00:02<00:00, 319.60it/s]
120
  88%|████████▊ | 882/1000 [00:02<00:00, 320.21it/s]
121
  92%|█████████▏| 915/1000 [00:02<00:00, 320.15it/s]
122
  95%|█████████▍| 949/1000 [00:02<00:00, 323.37it/s]
123
  98%|█████████▊| 982/1000 [00:03<00:00, 325.28it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  0%| | 0/1000 [00:00<?, ?it/s]
125
  3%|▎ | 33/1000 [00:00<00:02, 327.93it/s]
126
  7%|▋ | 66/1000 [00:00<00:02, 323.84it/s]
127
  10%|▉ | 99/1000 [00:00<00:02, 324.73it/s]
128
  13%|█▎ | 132/1000 [00:00<00:02, 325.68it/s]
129
  16%|█▋ | 165/1000 [00:00<00:02, 325.75it/s]
130
  20%|█▉ | 198/1000 [00:00<00:02, 326.45it/s]
131
  23%|██▎ | 231/1000 [00:00<00:02, 326.83it/s]
132
  26%|██▋ | 264/1000 [00:00<00:02, 327.11it/s]
133
  30%|██▉ | 297/1000 [00:00<00:02, 327.03it/s]
134
  33%|███▎ | 330/1000 [00:01<00:02, 327.11it/s]
135
  36%|███▋ | 363/1000 [00:01<00:01, 327.22it/s]
136
  40%|███▉ | 396/1000 [00:01<00:01, 326.96it/s]
137
  43%|████▎ | 429/1000 [00:01<00:01, 327.79it/s]
138
  46%|████▌ | 462/1000 [00:01<00:01, 327.68it/s]
139
  50%|████▉ | 495/1000 [00:01<00:01, 327.71it/s]
140
  53%|█████▎ | 528/1000 [00:01<00:01, 326.93it/s]
141
  56%|███���█▌ | 561/1000 [00:01<00:01, 326.89it/s]
142
  59%|█████▉ | 594/1000 [00:01<00:01, 326.94it/s]
143
  63%|██████▎ | 627/1000 [00:01<00:01, 326.92it/s]
144
  66%|██████▌ | 660/1000 [00:02<00:01, 327.35it/s]
145
  69%|██████▉ | 693/1000 [00:02<00:00, 327.47it/s]
146
  73%|███████▎ | 726/1000 [00:02<00:00, 327.41it/s]
147
  76%|███████▌ | 759/1000 [00:02<00:00, 327.50it/s]
148
  79%|███████▉ | 792/1000 [00:02<00:00, 327.44it/s]
149
  82%|████████▎ | 825/1000 [00:02<00:00, 326.28it/s]
150
  86%|████████▌ | 858/1000 [00:02<00:00, 326.65it/s]
151
  89%|████████▉ | 891/1000 [00:02<00:00, 326.94it/s]
152
  92%|█████████▏| 924/1000 [00:02<00:00, 327.05it/s]
153
  96%|█████████▌| 957/1000 [00:02<00:00, 327.27it/s]
154
  99%|█████████▉| 990/1000 [00:03<00:00, 327.25it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  0%| | 0/1000 [00:00<?, ?it/s]
156
  3%|▎ | 33/1000 [00:00<00:02, 325.98it/s]
157
  7%|▋ | 66/1000 [00:00<00:02, 326.73it/s]
158
  10%|▉ | 99/1000 [00:00<00:02, 327.17it/s]
159
  13%|█▎ | 132/1000 [00:00<00:02, 327.32it/s]
160
  16%|█▋ | 165/1000 [00:00<00:02, 327.19it/s]
161
  20%|█▉ | 198/1000 [00:00<00:02, 327.14it/s]
162
  23%|██▎ | 231/1000 [00:00<00:02, 325.95it/s]
163
  26%|██▋ | 264/1000 [00:00<00:02, 326.41it/s]
164
  30%|██▉ | 297/1000 [00:00<00:02, 326.52it/s]
165
  33%|███▎ | 330/1000 [00:01<00:02, 326.60it/s]
166
  36%|███▋ | 363/1000 [00:01<00:01, 326.00it/s]
167
  40%|███▉ | 396/1000 [00:01<00:01, 326.26it/s]
168
  43%|████▎ | 429/1000 [00:01<00:01, 326.40it/s]
169
  46%|████▌ | 462/1000 [00:01<00:01, 326.64it/s]
170
  50%|████▉ | 495/1000 [00:01<00:01, 326.91it/s]
171
  53%|█████▎ | 528/1000 [00:01<00:01, 327.02it/s]
172
  56%|█████▌ | 561/1000 [00:01<00:01, 326.70it/s]
173
  59%|█████▉ | 594/1000 [00:01<00:01, 325.71it/s]
174
  63%|██████▎ | 627/1000 [00:01<00:01, 325.87it/s]
175
  66%|██████▌ | 660/1000 [00:02<00:01, 324.38it/s]
176
  69%|██████▉ | 693/1000 [00:02<00:00, 325.23it/s]
177
  73%|███████▎ | 726/1000 [00:02<00:00, 325.63it/s]
178
  76%|███████▌ | 760/1000 [00:02<00:00, 327.25it/s]
179
  79%|███████▉ | 793/1000 [00:02<00:00, 325.87it/s]
180
  83%|████████▎ | 826/1000 [00:02<00:00, 326.15it/s]
181
  86%|████████▌ | 859/1000 [00:02<00:00, 326.42it/s]
182
  89%|████████▉ | 892/1000 [00:02<00:00, 326.59it/s]
183
  92%|█████████▎| 925/1000 [00:02<00:00, 326.71it/s]
184
  96%|█████████▌| 958/1000 [00:02<00:00, 326.80it/s]
185
  99%|█████████▉| 991/1000 [00:03<00:00, 322.46it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  0%| | 0/1000 [00:00<?, ?it/s]
187
  3%|▎ | 33/1000 [00:00<00:02, 325.92it/s]
188
  7%|▋ | 66/1000 [00:00<00:02, 326.72it/s]
189
  10%|▉ | 99/1000 [00:00<00:02, 327.75it/s]
190
  13%|█▎ | 132/1000 [00:00<00:02, 327.44it/s]
191
  16%|█▋ | 165/1000 [00:00<00:02, 320.79it/s]
192
  20%|█▉ | 198/1000 [00:00<00:02, 320.00it/s]
193
  23%|██▎ | 231/1000 [00:00<00:02, 315.45it/s]
194
  26%|██▋ | 263/1000 [00:00<00:02, 313.36it/s]
195
  30%|██▉ | 295/1000 [00:00<00:02, 309.30it/s]
196
  33%|███▎ | 326/1000 [00:01<00:02, 307.50it/s]
197
  36%|███▌ | 357/1000 [00:01<00:02, 306.98it/s]
198
  39%|███▉ | 388/1000 [00:01<00:01, 307.23it/s]
199
  42%|████▏ | 419/1000 [00:01<00:01, 306.67it/s]
200
  45%|████▌ | 450/1000 [00:01<00:01, 306.88it/s]
201
  48%|████▊ | 481/1000 [00:01<00:01, 305.78it/s]
202
  51%|█████ | 512/1000 [00:01<00:01, 305.73it/s]
203
  54%|█████▍ | 543/1000 [00:01<00:01, 306.05it/s]
204
  57%|█████▋ | 574/1000 [00:01<00:01, 306.76it/s]
205
  61%|██████ | 606/1000 [00:01<00:01, 307.81it/s]
206
  64%|██████▎ | 637/1000 [00:02<00:01, 307.53it/s]
207
  67%|██████▋ | 669/1000 [00:02<00:01, 308.34it/s]
208
  70%|███████ | 701/1000 [00:02<00:00, 308.94it/s]
209
  73%|███████▎ | 732/1000 [00:02<00:00, 308.72it/s]
210
  76%|███████▋ | 763/1000 [00:02<00:00, 307.97it/s]
211
  79%|███████▉ | 794/1000 [00:02<00:00, 307.11it/s]
212
  82%|████████▎ | 825/1000 [00:02<00:00, 306.59it/s]
213
  86%|████████▌ | 856/1000 [00:02<00:00, 306.58it/s]
214
  89%|████████▊ | 887/1000 [00:02<00:00, 306.47it/s]
215
  92%|█████████▏| 918/1000 [00:02<00:00, 306.92it/s]
216
  95%|█████████▍| 949/1000 [00:03<00:00, 306.27it/s]
217
  98%|█████████▊| 980/1000 [00:03<00:00, 306.93it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
  0%| | 0/1000 [00:00<?, ?it/s]
219
  3%|▎ | 31/1000 [00:00<00:03, 307.34it/s]
220
  6%|▌ | 62/1000 [00:00<00:03, 308.89it/s]
221
  9%|▉ | 93/1000 [00:00<00:02, 305.80it/s]
222
  13%|█▎ | 126/1000 [00:00<00:02, 313.60it/s]
223
  16%|█▌ | 159/1000 [00:00<00:02, 318.74it/s]
224
  19%|█▉ | 192/1000 [00:00<00:02, 322.43it/s]
225
  22%|██▎ | 225/1000 [00:00<00:02, 324.85it/s]
226
  26%|██▌ | 258/1000 [00:00<00:02, 325.70it/s]
227
  29%|██▉ | 291/1000 [00:00<00:02, 325.78it/s]
228
  32%|███▏ | 324/1000 [00:01<00:02, 326.71it/s]
229
  36%|███▌ | 357/1000 [00:01<00:01, 327.65it/s]
230
  39%|███▉ | 391/1000 [00:01<00:01, 328.41it/s]
231
  42%|████▏ | 424/1000 [00:01<00:01, 326.39it/s]
232
  46%|████▌ | 457/1000 [00:01<00:01, 322.39it/s]
233
  49%|████▉ | 490/1000 [00:01<00:01, 320.61it/s]
234
  52%|█████▏ | 523/1000 [00:01<00:01, 319.54it/s]
235
  56%|█████▌ | 555/1000 [00:01<00:01, 317.62it/s]
236
  59%|█████▊ | 587/1000 [00:01<00:01, 317.53it/s]
237
  62%|██████▏ | 620/1000 [00:01<00:01, 319.20it/s]
238
  65%|██████▌ | 653/1000 [00:02<00:01, 321.46it/s]
239
  69%|██████▊ | 686/1000 [00:02<00:00, 322.83it/s]
240
  72%|███████▏ | 719/1000 [00:02<00:00, 322.78it/s]
241
  75%|███████▌ | 752/1000 [00:02<00:00, 318.29it/s]
242
  78%|███████▊ | 784/1000 [00:02<00:00, 316.84it/s]
243
  82%|████████▏ | 816/1000 [00:02<00:00, 316.92it/s]
244
  85%|████████▍ | 849/1000 [00:02<00:00, 319.96it/s]
245
  88%|████████▊ | 882/1000 [00:02<00:00, 321.79it/s]
246
  92%|█████████▏| 915/1000 [00:02<00:00, 322.97it/s]
247
  95%|█████████▍| 949/1000 [00:02<00:00, 325.17it/s]
248
  98%|█████████▊| 982/1000 [00:03<00:00, 326.10it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
249
  0%| | 0/1000 [00:00<?, ?it/s]
250
  3%|▎ | 33/1000 [00:00<00:02, 327.90it/s]
251
  7%|▋ | 66/1000 [00:00<00:02, 324.40it/s]
252
  10%|▉ | 99/1000 [00:00<00:02, 324.89it/s]
253
  13%|█▎ | 132/1000 [00:00<00:02, 325.79it/s]
254
  16%|█▋ | 165/1000 [00:00<00:02, 326.63it/s]
255
  20%|█▉ | 198/1000 [00:00<00:02, 326.90it/s]
256
  23%|██▎ | 232/1000 [00:00<00:02, 328.78it/s]
257
  27%|██▋ | 266/1000 [00:00<00:02, 329.70it/s]
258
  30%|███ | 300/1000 [00:00<00:02, 330.30it/s]
259
  33%|███▎ | 334/1000 [00:01<00:02, 330.54it/s]
260
  37%|███▋ | 368/1000 [00:01<00:01, 330.89it/s]
261
  40%|████ | 402/1000 [00:01<00:01, 330.98it/s]
262
  44%|████▎ | 436/1000 [00:01<00:01, 330.48it/s]
263
  47%|████▋ | 470/1000 [00:01<00:01, 330.53it/s]
264
  50%|█████ | 504/1000 [00:01<00:01, 328.75it/s]
265
  54%|█████▍ | 538/1000 [00:01<00:01, 329.19it/s]
266
  57%|█████▋ | 571/1000 [00:01<00:01, 328.53it/s]
267
  60%|██████ | 604/1000 [00:01<00:01, 328.59it/s]
268
  64%|██████▍ | 638/1000 [00:01<00:01, 329.11it/s]
269
  67%|██████▋ | 671/1000 [00:02<00:01, 328.50it/s]
270
  70%|███████ | 704/1000 [00:02<00:00, 327.31it/s]
271
  74%|███████▎ | 737/1000 [00:02<00:00, 327.66it/s]
272
  77%|███████▋ | 770/1000 [00:02<00:00, 325.85it/s]
273
  80%|████████ | 803/1000 [00:02<00:00, 325.77it/s]
274
  84%|████████▎ | 836/1000 [00:02<00:00, 326.69it/s]
275
  87%|████████▋ | 870/1000 [00:02<00:00, 327.75it/s]
276
  90%|█████████ | 903/1000 [00:02<00:00, 328.17it/s]
277
  94%|████���████▎| 936/1000 [00:02<00:00, 328.22it/s]
278
  97%|█████████▋| 969/1000 [00:02<00:00, 324.66it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
279
  0%| | 0/1000 [00:00<?, ?it/s]
280
  3%|▎ | 33/1000 [00:00<00:02, 327.82it/s]
281
  7%|▋ | 66/1000 [00:00<00:02, 327.31it/s]
282
  10%|▉ | 99/1000 [00:00<00:02, 328.39it/s]
283
  13%|█▎ | 132/1000 [00:00<00:02, 328.29it/s]
284
  16%|█▋ | 165/1000 [00:00<00:02, 327.43it/s]
285
  20%|█▉ | 198/1000 [00:00<00:02, 328.12it/s]
286
  23%|██▎ | 231/1000 [00:00<00:02, 328.55it/s]
287
  26%|██▋ | 265/1000 [00:00<00:02, 329.40it/s]
288
  30%|██▉ | 299/1000 [00:00<00:02, 330.27it/s]
289
  33%|███▎ | 333/1000 [00:01<00:02, 330.64it/s]
290
  37%|███▋ | 367/1000 [00:01<00:01, 329.99it/s]
291
  40%|████ | 400/1000 [00:01<00:01, 326.81it/s]
292
  43%|████▎ | 433/1000 [00:01<00:01, 326.22it/s]
293
  47%|████▋ | 466/1000 [00:01<00:01, 324.07it/s]
294
  50%|████▉ | 499/1000 [00:01<00:01, 322.23it/s]
295
  53%|█████▎ | 532/1000 [00:01<00:01, 324.08it/s]
296
  56%|█████▋ | 565/1000 [00:01<00:01, 324.52it/s]
297
  60%|█████▉ | 598/1000 [00:01<00:01, 325.06it/s]
298
  63%|██████▎ | 631/1000 [00:01<00:01, 325.58it/s]
299
  66%|██████▋ | 665/1000 [00:02<00:01, 326.98it/s]
300
  70%|██████▉ | 699/1000 [00:02<00:00, 328.33it/s]
301
  73%|███████▎ | 733/1000 [00:02<00:00, 328.89it/s]
302
  77%|███████▋ | 767/1000 [00:02<00:00, 329.89it/s]
303
  80%|████████ | 800/1000 [00:02<00:00, 329.60it/s]
304
  83%|████████▎ | 833/1000 [00:02<00:00, 329.66it/s]
305
  87%|████████▋ | 867/1000 [00:02<00:00, 330.47it/s]
306
  90%|█████████ | 901/1000 [00:02<00:00, 329.36it/s]
307
  93%|█████████▎| 934/1000 [00:02<00:00, 328.30it/s]
308
  97%|█████████▋| 967/1000 [00:02<00:00, 326.14it/s]
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /opt/conda/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
2
+ warnings.warn(
3
+ [codecarbon INFO @ 11:54:32] [setup] RAM Tracking...
4
+ [codecarbon INFO @ 11:54:32] [setup] GPU Tracking...
5
+ [codecarbon INFO @ 11:54:32] Tracking Nvidia GPU via pynvml
6
+ [codecarbon DEBUG @ 11:54:32] GPU available. Starting setup
7
+ [codecarbon INFO @ 11:54:32] [setup] CPU Tracking...
8
+ [codecarbon DEBUG @ 11:54:32] Not using PowerGadget, an exception occurred while instantiating IntelPowerGadget : Platform not supported by Intel Power Gadget
9
+ [codecarbon DEBUG @ 11:54:32] Not using the RAPL interface, an exception occurred while instantiating IntelRAPL : Intel RAPL files not found at /sys/class/powercap/intel-rapl on linux
10
+ [codecarbon DEBUG @ 11:54:32] Not using PowerMetrics, an exception occurred while instantiating Powermetrics : Platform not supported by Powermetrics
11
+ [codecarbon WARNING @ 11:54:32] No CPU tracking mode found. Falling back on CPU constant mode.
12
+ [codecarbon WARNING @ 11:54:34] We saw that you have a AMD EPYC 7R32 but we don't know it. Please contact us.
13
+ [codecarbon INFO @ 11:54:34] CPU Model on constant consumption mode: AMD EPYC 7R32
14
+ [codecarbon INFO @ 11:54:34] >>> Tracker's metadata:
15
+ [codecarbon INFO @ 11:54:34] Platform system: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
16
+ [codecarbon INFO @ 11:54:34] Python version: 3.9.20
17
+ [codecarbon INFO @ 11:54:34] CodeCarbon version: 2.5.1
18
+ [codecarbon INFO @ 11:54:34] Available RAM : 186.705 GB
19
+ [codecarbon INFO @ 11:54:34] CPU count: 48
20
+ [codecarbon INFO @ 11:54:34] CPU model: AMD EPYC 7R32
21
+ [codecarbon INFO @ 11:54:34] GPU count: 1
22
+ [codecarbon INFO @ 11:54:34] GPU model: 1 x NVIDIA A10G
23
+ [codecarbon DEBUG @ 11:54:35] Not running on AWS
24
+ [codecarbon DEBUG @ 11:54:36] Not running on Azure
25
+ [codecarbon DEBUG @ 11:54:37] Not running on GCP
26
+ [codecarbon INFO @ 11:54:37] Saving emissions data to file /runs/sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/codecarbon.csv
27
+ [codecarbon DEBUG @ 11:54:37] EmissionsData(timestamp='2024-12-06T11:54:37', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.0021375500364229083, emissions=0.0, emissions_rate=0.0, cpu_power=0.0, gpu_power=0.0, ram_power=0.0, cpu_energy=0, gpu_energy=0, ram_energy=0, energy_consumed=0, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
28
+
29
+ [codecarbon INFO @ 11:54:37] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.2656216621398926 W
30
+ [codecarbon DEBUG @ 11:54:37] RAM : 0.27 W during 0.16 s [measurement time: 0.0005]
31
+ [codecarbon INFO @ 11:54:37] Energy consumed for all GPUs : 0.000004 kWh. Total GPU Power : 87.50892425306003 W
32
+ [codecarbon DEBUG @ 11:54:37] GPU : 87.51 W during 0.16 s [measurement time: 0.0022]
33
+ [codecarbon INFO @ 11:54:37] Energy consumed for all CPUs : 0.000002 kWh. Total CPU Power : 42.5 W
34
+ [codecarbon DEBUG @ 11:54:37] CPU : 42.50 W during 0.16 s [measurement time: 0.0000]
35
+ [codecarbon INFO @ 11:54:37] 0.000006 kWh of electricity used since the beginning.
36
+ [codecarbon DEBUG @ 11:54:37] last_duration=0.1604911790927872
37
+ ------------------------
38
+ [codecarbon DEBUG @ 11:54:37] EmissionsData(timestamp='2024-12-06T11:54:37', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.16357881703879684, emissions=2.163673245772878e-06, emissions_rate=1.3227099235347254e-05, cpu_power=42.5, gpu_power=87.50892425306003, ram_power=0.2656216621398926, cpu_energy=1.929911376969863e-06, gpu_energy=3.919725356738013e-06, ram_energy=1.184183714824478e-08, energy_consumed=5.861478570856121e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
39
+ [codecarbon DEBUG @ 11:54:37] EmissionsData(timestamp='2024-12-06T11:54:37', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.002228492056019604, emissions=2.163673245772878e-06, emissions_rate=0.0009709136004897853, cpu_power=42.5, gpu_power=87.50892425306003, ram_power=0.2656216621398926, cpu_energy=1.929911376969863e-06, gpu_energy=3.919725356738013e-06, ram_energy=1.184183714824478e-08, energy_consumed=5.861478570856121e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
40
+
41
  0%| | 0/1000 [00:00<?, ?it/s]
42
  3%|▎ | 31/1000 [00:00<00:03, 302.75it/s]
43
  6%|▌ | 62/1000 [00:00<00:03, 306.90it/s]
44
  9%|▉ | 94/1000 [00:00<00:02, 310.23it/s]
45
  13%|█▎ | 127/1000 [00:00<00:02, 316.38it/s]
46
  16%|█▌ | 160/1000 [00:00<00:02, 320.32it/s]
47
  19%|█▉ | 193/1000 [00:00<00:02, 323.35it/s]
48
  23%|██▎ | 226/1000 [00:00<00:02, 325.31it/s]
49
  26%|██▌ | 259/1000 [00:00<00:02, 323.69it/s]
50
  29%|██▉ | 292/1000 [00:00<00:02, 324.77it/s]
51
  32%|███▎ | 325/1000 [00:01<00:02, 324.61it/s]
52
  36%|███▌ | 358/1000 [00:01<00:01, 325.92it/s]
53
  39%|███▉ | 391/1000 [00:01<00:01, 327.14it/s]
54
  42%|████▏ | 424/1000 [00:01<00:01, 327.35it/s]
55
  46%|████▌ | 457/1000 [00:01<00:01, 323.07it/s]
56
  49%|████▉ | 490/1000 [00:01<00:01, 323.89it/s]
57
  52%|█████▏ | 523/1000 [00:01<00:01, 325.70it/s]
58
  56%|█████▌ | 557/1000 [00:01<00:01, 327.08it/s]
59
  59%|█████▉ | 591/1000 [00:01<00:01, 327.96it/s]
60
  62%|██████▏ | 624/1000 [00:01<00:01, 328.16it/s]
61
  66%|██████▌ | 657/1000 [00:02<00:01, 326.97it/s]
62
  69%|██████▉ | 691/1000 [00:02<00:00, 328.18it/s]
63
  72%|███████▏ | 724/1000 [00:02<00:00, 328.71it/s]
64
  76%|███████▌ | 757/1000 [00:02<00:00, 327.26it/s]
65
  79%|███████▉ | 790/1000 [00:02<00:00, 324.90it/s]
66
  82%|████████▏ | 823/1000 [00:02<00:00, 323.04it/s]
67
  86%|████████▌ | 857/1000 [00:02<00:00, 325.26it/s]
68
  89%|████████▉ | 891/1000 [00:02<00:00, 326.77it/s]
69
  92%|█████████▏| 924/1000 [00:02<00:00, 327.60it/s]
70
  96%|█████████▌| 957/1000 [00:02<00:00, 326.58it/s]
71
  99%|█████████▉| 990/1000 [00:03<00:00, 325.72it/s]
72
+ [codecarbon WARNING @ 11:54:41] Background scheduler didn't run for a long period (3s), results might be inaccurate
73
+ [codecarbon INFO @ 11:54:41] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.34089088439941406 W
74
+ [codecarbon DEBUG @ 11:54:41] RAM : 0.34 W during 3.08 s [measurement time: 0.0004]
75
+ [codecarbon INFO @ 11:54:41] Energy consumed for all GPUs : 0.000076 kWh. Total GPU Power : 84.22292964314796 W
76
+ [codecarbon DEBUG @ 11:54:41] GPU : 84.22 W during 3.08 s [measurement time: 0.0023]
77
+ [codecarbon INFO @ 11:54:41] Energy consumed for all CPUs : 0.000038 kWh. Total CPU Power : 42.5 W
78
+ [codecarbon DEBUG @ 11:54:41] CPU : 42.50 W during 3.09 s [measurement time: 0.0000]
79
+ [codecarbon INFO @ 11:54:41] 0.000115 kWh of electricity used since the beginning.
80
+ [codecarbon DEBUG @ 11:54:41] last_duration=3.0834458130411804
81
+ ------------------------
82
+ [codecarbon DEBUG @ 11:54:41] EmissionsData(timestamp='2024-12-06T11:54:41', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.0867553050629795, emissions=4.2359039112368636e-05, emissions_rate=1.3722836741509829e-05, cpu_power=42.5, gpu_power=84.22292964314796, ram_power=0.34089088439941406, cpu_energy=3.8369566313970915e-05, gpu_energy=7.607894975159013e-05, ram_energy=3.03838766332935e-07, energy_consumed=0.00011475235483189399, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
83
+ [codecarbon DEBUG @ 11:54:41] EmissionsData(timestamp='2024-12-06T11:54:41', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.002034757984802127, emissions=4.2359039112368636e-05, emissions_rate=0.020817728412299563, cpu_power=42.5, gpu_power=84.22292964314796, ram_power=0.34089088439941406, cpu_energy=3.8369566313970915e-05, gpu_energy=7.607894975159013e-05, ram_energy=3.03838766332935e-07, energy_consumed=0.00011475235483189399, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
84
+
85
  0%| | 0/1000 [00:00<?, ?it/s]
86
  3%|▎ | 33/1000 [00:00<00:02, 324.05it/s]
87
  7%|▋ | 66/1000 [00:00<00:02, 325.59it/s]
88
  10%|▉ | 99/1000 [00:00<00:02, 326.55it/s]
89
  13%|█▎ | 132/1000 [00:00<00:02, 326.44it/s]
90
  16%|█▋ | 165/1000 [00:00<00:02, 326.36it/s]
91
  20%|█▉ | 198/1000 [00:00<00:02, 326.33it/s]
92
  23%|██▎ | 231/1000 [00:00<00:02, 326.59it/s]
93
  26%|██▋ | 264/1000 [00:00<00:02, 326.58it/s]
94
  30%|██▉ | 297/1000 [00:00<00:02, 326.71it/s]
95
  33%|███▎ | 330/1000 [00:01<00:02, 326.74it/s]
96
  36%|███▋ | 363/1000 [00:01<00:01, 326.64it/s]
97
  40%|███▉ | 396/1000 [00:01<00:01, 326.67it/s]
98
  43%|████▎ | 429/1000 [00:01<00:01, 326.86it/s]
99
  46%|████▌ | 462/1000 [00:01<00:01, 326.92it/s]
100
  50%|████▉ | 495/1000 [00:01<00:01, 327.68it/s]
101
  53%|█████▎ | 528/1000 [00:01<00:01, 327.45it/s]
102
  56%|█████▌ | 561/1000 [00:01<00:01, 327.30it/s]
103
  59%|█████▉ | 594/1000 [00:01<00:01, 326.96it/s]
104
  63%|██████▎ | 627/1000 [00:01<00:01, 326.89it/s]
105
  66%|██████▌ | 660/1000 [00:02<00:01, 327.56it/s]
106
  69%|██████▉ | 693/1000 [00:02<00:00, 327.55it/s]
107
  73%|███████▎ | 726/1000 [00:02<00:00, 326.08it/s]
108
  76%|███████▌ | 759/1000 [00:02<00:00, 323.88it/s]
109
  79%|███████▉ | 792/1000 [00:02<00:00, 323.71it/s]
110
  82%|████████▎ | 825/1000 [00:02<00:00, 321.71it/s]
111
  86%|████████▌ | 858/1000 [00:02<00:00, 323.15it/s]
112
  89%|████████▉ | 891/1000 [00:02<00:00, 324.34it/s]
113
  92%|█████████▏| 924/1000 [00:02<00:00, 325.15it/s]
114
  96%|█████████▌| 957/1000 [00:02<00:00, 325.70it/s]
115
  99%|█████████▉| 990/1000 [00:03<00:00, 325.56it/s]
116
+ [codecarbon WARNING @ 11:54:44] Background scheduler didn't run for a long period (3s), results might be inaccurate
117
+ [codecarbon INFO @ 11:54:44] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34098529815673834 W
118
+ [codecarbon DEBUG @ 11:54:44] RAM : 0.34 W during 3.07 s [measurement time: 0.0005]
119
+ [codecarbon INFO @ 11:54:44] Energy consumed for all GPUs : 0.000148 kWh. Total GPU Power : 84.83716186589065 W
120
+ [codecarbon DEBUG @ 11:54:44] GPU : 84.84 W during 3.07 s [measurement time: 0.0022]
121
+ [codecarbon INFO @ 11:54:44] Energy consumed for all CPUs : 0.000075 kWh. Total CPU Power : 42.5 W
122
+ [codecarbon DEBUG @ 11:54:44] CPU : 42.50 W during 3.07 s [measurement time: 0.0000]
123
+ [codecarbon INFO @ 11:54:44] 0.000224 kWh of electricity used since the beginning.
124
+ [codecarbon DEBUG @ 11:54:44] last_duration=3.0702556839678437
125
+ ------------------------
126
+ [codecarbon DEBUG @ 11:54:44] EmissionsData(timestamp='2024-12-06T11:54:44', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.0734386909753084, emissions=8.257458112321423e-05, emissions_rate=2.6867163924786297e-05, cpu_power=42.5, gpu_power=84.83716186589065, ram_power=0.34098529815673834, cpu_energy=7.465200330180881e-05, gpu_energy=0.00014845122987061643, ram_energy=5.946559135256488e-07, energy_consumed=0.00022369788908595088, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
127
+ [codecarbon DEBUG @ 11:54:44] EmissionsData(timestamp='2024-12-06T11:54:44', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.002029986004345119, emissions=8.257458112321423e-05, emissions_rate=0.04067741400505522, cpu_power=42.5, gpu_power=84.83716186589065, ram_power=0.34098529815673834, cpu_energy=7.465200330180881e-05, gpu_energy=0.00014845122987061643, ram_energy=5.946559135256488e-07, energy_consumed=0.00022369788908595088, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
128
+
129
  0%| | 0/1000 [00:00<?, ?it/s]
130
  3%|▎ | 33/1000 [00:00<00:02, 323.34it/s]
131
  7%|▋ | 66/1000 [00:00<00:02, 322.81it/s]
132
  10%|▉ | 99/1000 [00:00<00:02, 324.69it/s]
133
  13%|█▎ | 132/1000 [00:00<00:02, 322.64it/s]
134
  16%|█▋ | 165/1000 [00:00<00:02, 323.95it/s]
135
  20%|█▉ | 198/1000 [00:00<00:02, 325.02it/s]
136
  23%|██▎ | 231/1000 [00:00<00:02, 325.76it/s]
137
  26%|██▋ | 264/1000 [00:00<00:02, 326.10it/s]
138
  30%|██▉ | 297/1000 [00:00<00:02, 325.82it/s]
139
  33%|███▎ | 330/1000 [00:01<00:02, 326.53it/s]
140
  36%|███▋ | 363/1000 [00:01<00:01, 326.75it/s]
141
  40%|███▉ | 396/1000 [00:01<00:01, 326.79it/s]
142
  43%|████▎ | 429/1000 [00:01<00:01, 326.82it/s]
143
  46%|████▌ | 462/1000 [00:01<00:01, 326.10it/s]
144
  50%|████▉ | 495/1000 [00:01<00:01, 326.40it/s]
145
  53%|█████▎ | 528/1000 [00:01<00:01, 326.82it/s]
146
  56%|█████▌ | 561/1000 [00:01<00:01, 326.92it/s]
147
  59%|█████▉ | 594/1000 [00:01<00:01, 327.04it/s]
148
  63%|██████▎ | 627/1000 [00:01<00:01, 326.93it/s]
149
  66%|██████▌ | 660/1000 [00:02<00:01, 326.86it/s]
150
  69%|██████▉ | 693/1000 [00:02<00:00, 325.20it/s]
151
  73%|███████▎ | 726/1000 [00:02<00:00, 326.35it/s]
152
  76%|███████▌ | 759/1000 [00:02<00:00, 327.29it/s]
153
  79%|███████▉ | 792/1000 [00:02<00:00, 327.55it/s]
154
  83%|████████▎ | 826/1000 [00:02<00:00, 328.32it/s]
155
  86%|████████▌ | 860/1000 [00:02<00:00, 328.90it/s]
156
  89%|████████▉ | 894/1000 [00:02<00:00, 329.09it/s]
157
  93%|█████████▎| 927/1000 [00:02<00:00, 327.79it/s]
158
  96%|█████████▌| 960/1000 [00:02<00:00, 327.29it/s]
159
  99%|█████████▉| 993/1000 [00:03<00:00, 325.73it/s]
160
+ [codecarbon WARNING @ 11:54:47] Background scheduler didn't run for a long period (3s), results might be inaccurate
161
+ [codecarbon INFO @ 11:54:47] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.3410181999206543 W
162
+ [codecarbon DEBUG @ 11:54:47] RAM : 0.34 W during 3.07 s [measurement time: 0.0004]
163
+ [codecarbon INFO @ 11:54:47] Energy consumed for all GPUs : 0.000221 kWh. Total GPU Power : 85.03675977075001 W
164
+ [codecarbon DEBUG @ 11:54:47] GPU : 85.04 W during 3.07 s [measurement time: 0.0027]
165
+ [codecarbon INFO @ 11:54:47] Energy consumed for all CPUs : 0.000111 kWh. Total CPU Power : 42.5 W
166
+ [codecarbon DEBUG @ 11:54:47] CPU : 42.50 W during 3.07 s [measurement time: 0.0000]
167
+ [codecarbon INFO @ 11:54:47] 0.000333 kWh of electricity used since the beginning.
168
+ [codecarbon DEBUG @ 11:54:47] last_duration=3.066205707960762
169
+ ------------------------
170
+ [codecarbon DEBUG @ 11:54:47] EmissionsData(timestamp='2024-12-06T11:54:47', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.0698766839923337, emissions=0.00012280197184959016, emissions_rate=4.000224910985279e-05, cpu_power=42.5, gpu_power=85.03675977075001, ram_power=0.3410181999206543, cpu_energy=0.00011089244820112882, gpu_energy=0.0002208979544953138, ram_energy=8.851192944630623e-07, energy_consumed=0.0003326755219909057, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
171
+ [codecarbon DEBUG @ 11:54:47] EmissionsData(timestamp='2024-12-06T11:54:47', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.005458462983369827, emissions=0.00012280197184959016, emissions_rate=0.022497536801793488, cpu_power=42.5, gpu_power=85.03675977075001, ram_power=0.3410181999206543, cpu_energy=0.00011089244820112882, gpu_energy=0.0002208979544953138, ram_energy=8.851192944630623e-07, energy_consumed=0.0003326755219909057, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
172
+
173
  0%| | 0/1000 [00:00<?, ?it/s]
174
  3%|▎ | 33/1000 [00:00<00:02, 326.36it/s]
175
  7%|▋ | 66/1000 [00:00<00:02, 319.32it/s]
176
  10%|▉ | 98/1000 [00:00<00:02, 318.16it/s]
177
  13%|█▎ | 131/1000 [00:00<00:02, 319.01it/s]
178
  16%|█▋ | 164/1000 [00:00<00:02, 319.73it/s]
179
  20%|█▉ | 197/1000 [00:00<00:02, 320.14it/s]
180
  23%|██▎ | 230/1000 [00:00<00:02, 318.02it/s]
181
  26%|██▌ | 262/1000 [00:00<00:02, 317.41it/s]
182
  30%|██▉ | 295/1000 [00:00<00:02, 318.40it/s]
183
  33%|███▎ | 327/1000 [00:01<00:02, 318.88it/s]
184
  36%|███▌ | 360/1000 [00:01<00:02, 319.35it/s]
185
  39%|███▉ | 392/1000 [00:01<00:01, 319.26it/s]
186
  42%|████▏ | 424/1000 [00:01<00:01, 319.43it/s]
187
  46%|████▌ | 456/1000 [00:01<00:01, 319.41it/s]
188
  49%|████▉ | 489/1000 [00:01<00:01, 319.94it/s]
189
  52%|█████▏ | 522/1000 [00:01<00:01, 320.30it/s]
190
  56%|█████▌ | 555/1000 [00:01<00:01, 320.62it/s]
191
  59%|█████▉ | 588/1000 [00:01<00:01, 320.43it/s]
192
  62%|██████▏ | 621/1000 [00:01<00:01, 320.33it/s]
193
  65%|██████▌ | 654/1000 [00:02<00:01, 319.72it/s]
194
  69%|██████▊ | 686/1000 [00:02<00:00, 319.08it/s]
195
  72%|███████▏ | 718/1000 [00:02<00:00, 319.15it/s]
196
  75%|███████▌ | 750/1000 [00:02<00:00, 319.29it/s]
197
  78%|███████▊ | 783/1000 [00:02<00:00, 320.01it/s]
198
  82%|████████▏ | 816/1000 [00:02<00:00, 319.36it/s]
199
  85%|████████▍ | 849/1000 [00:02<00:00, 319.60it/s]
200
  88%|████████▊ | 882/1000 [00:02<00:00, 320.21it/s]
201
  92%|█████████▏| 915/1000 [00:02<00:00, 320.15it/s]
202
  95%|█████████▍| 949/1000 [00:02<00:00, 323.37it/s]
203
  98%|█████████▊| 982/1000 [00:03<00:00, 325.28it/s]
204
+ [codecarbon WARNING @ 11:54:50] Background scheduler didn't run for a long period (3s), results might be inaccurate
205
+ [codecarbon INFO @ 11:54:50] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.3410196304321289 W
206
+ [codecarbon DEBUG @ 11:54:50] RAM : 0.34 W during 3.13 s [measurement time: 0.0005]
207
+ [codecarbon INFO @ 11:54:50] Energy consumed for all GPUs : 0.000293 kWh. Total GPU Power : 83.1441430170896 W
208
+ [codecarbon DEBUG @ 11:54:50] GPU : 83.14 W during 3.13 s [measurement time: 0.0023]
209
+ [codecarbon INFO @ 11:54:50] Energy consumed for all CPUs : 0.000148 kWh. Total CPU Power : 42.5 W
210
+ [codecarbon DEBUG @ 11:54:50] CPU : 42.50 W during 3.13 s [measurement time: 0.0000]
211
+ [codecarbon INFO @ 11:54:50] 0.000442 kWh of electricity used since the beginning.
212
+ [codecarbon DEBUG @ 11:54:50] last_duration=3.1264077610103413
213
+ ------------------------
214
+ [codecarbon DEBUG @ 11:54:50] EmissionsData(timestamp='2024-12-06T11:54:50', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.1296109879622236, emissions=0.00016320993980941845, emissions_rate=5.215023222924232e-05, cpu_power=42.5, gpu_power=83.1441430170896, ram_power=0.3410196304321289, cpu_energy=0.00014783804723184508, gpu_energy=0.0002931230122751316, ram_energy=1.1812864376401158e-06, energy_consumed=0.0004421423459446168, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
215
+ [codecarbon DEBUG @ 11:54:50] EmissionsData(timestamp='2024-12-06T11:54:50', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.0020235819974914193, emissions=0.00016320993980941845, emissions_rate=0.08065397894018897, cpu_power=42.5, gpu_power=83.1441430170896, ram_power=0.3410196304321289, cpu_energy=0.00014783804723184508, gpu_energy=0.0002931230122751316, ram_energy=1.1812864376401158e-06, energy_consumed=0.0004421423459446168, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
216
+
217
  0%| | 0/1000 [00:00<?, ?it/s]
218
  3%|▎ | 33/1000 [00:00<00:02, 327.93it/s]
219
  7%|▋ | 66/1000 [00:00<00:02, 323.84it/s]
220
  10%|▉ | 99/1000 [00:00<00:02, 324.73it/s]
221
  13%|█▎ | 132/1000 [00:00<00:02, 325.68it/s]
222
  16%|█▋ | 165/1000 [00:00<00:02, 325.75it/s]
223
  20%|█▉ | 198/1000 [00:00<00:02, 326.45it/s]
224
  23%|██▎ | 231/1000 [00:00<00:02, 326.83it/s]
225
  26%|██▋ | 264/1000 [00:00<00:02, 327.11it/s]
226
  30%|██▉ | 297/1000 [00:00<00:02, 327.03it/s]
227
  33%|███▎ | 330/1000 [00:01<00:02, 327.11it/s]
228
  36%|███▋ | 363/1000 [00:01<00:01, 327.22it/s]
229
  40%|███▉ | 396/1000 [00:01<00:01, 326.96it/s]
230
  43%|████▎ | 429/1000 [00:01<00:01, 327.79it/s]
231
  46%|████▌ | 462/1000 [00:01<00:01, 327.68it/s]
232
  50%|████▉ | 495/1000 [00:01<00:01, 327.71it/s]
233
  53%|█████▎ | 528/1000 [00:01<00:01, 326.93it/s]
234
  56%|███���█▌ | 561/1000 [00:01<00:01, 326.89it/s]
235
  59%|█████▉ | 594/1000 [00:01<00:01, 326.94it/s]
236
  63%|██████▎ | 627/1000 [00:01<00:01, 326.92it/s]
237
  66%|██████▌ | 660/1000 [00:02<00:01, 327.35it/s]
238
  69%|██████▉ | 693/1000 [00:02<00:00, 327.47it/s]
239
  73%|███████▎ | 726/1000 [00:02<00:00, 327.41it/s]
240
  76%|███████▌ | 759/1000 [00:02<00:00, 327.50it/s]
241
  79%|███████▉ | 792/1000 [00:02<00:00, 327.44it/s]
242
  82%|████████▎ | 825/1000 [00:02<00:00, 326.28it/s]
243
  86%|████████▌ | 858/1000 [00:02<00:00, 326.65it/s]
244
  89%|████████▉ | 891/1000 [00:02<00:00, 326.94it/s]
245
  92%|█████████▏| 924/1000 [00:02<00:00, 327.05it/s]
246
  96%|█████████▌| 957/1000 [00:02<00:00, 327.27it/s]
247
  99%|█████████▉| 990/1000 [00:03<00:00, 327.25it/s]
248
+ [codecarbon WARNING @ 11:54:53] Background scheduler didn't run for a long period (3s), results might be inaccurate
249
+ [codecarbon INFO @ 11:54:53] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34102392196655273 W
250
+ [codecarbon DEBUG @ 11:54:53] RAM : 0.34 W during 3.06 s [measurement time: 0.0004]
251
+ [codecarbon INFO @ 11:54:53] Energy consumed for all GPUs : 0.000366 kWh. Total GPU Power : 85.22262567481995 W
252
+ [codecarbon DEBUG @ 11:54:53] GPU : 85.22 W during 3.06 s [measurement time: 0.0034]
253
+ [codecarbon INFO @ 11:54:53] Energy consumed for all CPUs : 0.000184 kWh. Total CPU Power : 42.5 W
254
+ [codecarbon DEBUG @ 11:54:53] CPU : 42.50 W during 3.07 s [measurement time: 0.0000]
255
+ [codecarbon INFO @ 11:54:53] 0.000551 kWh of electricity used since the beginning.
256
+ [codecarbon DEBUG @ 11:54:53] last_duration=3.0609874590300024
257
+ ------------------------
258
+ [codecarbon DEBUG @ 11:54:53] EmissionsData(timestamp='2024-12-06T11:54:53', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.06525030604098, emissions=0.00020342958596682954, emissions_rate=6.636638631628599e-05, cpu_power=42.5, gpu_power=85.22262567481995, ram_power=0.34102392196655273, cpu_energy=0.00018402383632742895, gpu_energy=0.00036560390359241524, ram_energy=1.4712585783195841e-06, energy_consumed=0.0005510989984981638, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
259
+ [codecarbon DEBUG @ 11:54:53] EmissionsData(timestamp='2024-12-06T11:54:53', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.006924876011908054, emissions=0.00020342958596682954, emissions_rate=0.029376639468636105, cpu_power=42.5, gpu_power=85.22262567481995, ram_power=0.34102392196655273, cpu_energy=0.00018402383632742895, gpu_energy=0.00036560390359241524, ram_energy=1.4712585783195841e-06, energy_consumed=0.0005510989984981638, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
260
+
261
  0%| | 0/1000 [00:00<?, ?it/s]
262
  3%|▎ | 33/1000 [00:00<00:02, 325.98it/s]
263
  7%|▋ | 66/1000 [00:00<00:02, 326.73it/s]
264
  10%|▉ | 99/1000 [00:00<00:02, 327.17it/s]
265
  13%|█▎ | 132/1000 [00:00<00:02, 327.32it/s]
266
  16%|█▋ | 165/1000 [00:00<00:02, 327.19it/s]
267
  20%|█▉ | 198/1000 [00:00<00:02, 327.14it/s]
268
  23%|██▎ | 231/1000 [00:00<00:02, 325.95it/s]
269
  26%|██▋ | 264/1000 [00:00<00:02, 326.41it/s]
270
  30%|██▉ | 297/1000 [00:00<00:02, 326.52it/s]
271
  33%|███▎ | 330/1000 [00:01<00:02, 326.60it/s]
272
  36%|███▋ | 363/1000 [00:01<00:01, 326.00it/s]
273
  40%|███▉ | 396/1000 [00:01<00:01, 326.26it/s]
274
  43%|████▎ | 429/1000 [00:01<00:01, 326.40it/s]
275
  46%|████▌ | 462/1000 [00:01<00:01, 326.64it/s]
276
  50%|████▉ | 495/1000 [00:01<00:01, 326.91it/s]
277
  53%|█████▎ | 528/1000 [00:01<00:01, 327.02it/s]
278
  56%|█████▌ | 561/1000 [00:01<00:01, 326.70it/s]
279
  59%|█████▉ | 594/1000 [00:01<00:01, 325.71it/s]
280
  63%|██████▎ | 627/1000 [00:01<00:01, 325.87it/s]
281
  66%|██████▌ | 660/1000 [00:02<00:01, 324.38it/s]
282
  69%|██████▉ | 693/1000 [00:02<00:00, 325.23it/s]
283
  73%|███████▎ | 726/1000 [00:02<00:00, 325.63it/s]
284
  76%|███████▌ | 760/1000 [00:02<00:00, 327.25it/s]
285
  79%|███████▉ | 793/1000 [00:02<00:00, 325.87it/s]
286
  83%|████████▎ | 826/1000 [00:02<00:00, 326.15it/s]
287
  86%|████████▌ | 859/1000 [00:02<00:00, 326.42it/s]
288
  89%|████████▉ | 892/1000 [00:02<00:00, 326.59it/s]
289
  92%|█████████▎| 925/1000 [00:02<00:00, 326.71it/s]
290
  96%|█████████▌| 958/1000 [00:02<00:00, 326.80it/s]
291
  99%|█████████▉| 991/1000 [00:03<00:00, 322.46it/s]
292
+ [codecarbon WARNING @ 11:54:56] Background scheduler didn't run for a long period (3s), results might be inaccurate
293
+ [codecarbon INFO @ 11:54:56] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.34102964401245117 W
294
+ [codecarbon DEBUG @ 11:54:56] RAM : 0.34 W during 3.08 s [measurement time: 0.0004]
295
+ [codecarbon INFO @ 11:54:56] Energy consumed for all GPUs : 0.000436 kWh. Total GPU Power : 82.04566114201081 W
296
+ [codecarbon DEBUG @ 11:54:56] GPU : 82.05 W during 3.08 s [measurement time: 0.0023]
297
+ [codecarbon INFO @ 11:54:56] Energy consumed for all CPUs : 0.000220 kWh. Total CPU Power : 42.5 W
298
+ [codecarbon DEBUG @ 11:54:56] CPU : 42.50 W during 3.08 s [measurement time: 0.0000]
299
+ [codecarbon INFO @ 11:54:56] 0.000658 kWh of electricity used since the beginning.
300
+ [codecarbon DEBUG @ 11:54:56] last_duration=3.0761995050124824
301
+ ------------------------
302
+ [codecarbon DEBUG @ 11:54:56] EmissionsData(timestamp='2024-12-06T11:54:56', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.0793501819716766, emissions=0.00024284179958616934, emissions_rate=7.886137828945463e-05, cpu_power=42.5, gpu_power=82.04566114201081, ram_power=0.34102964401245117, cpu_energy=0.0002203760916303307, gpu_energy=0.00043572951524950554, ram_energy=1.7626766807049815e-06, energy_consumed=0.0006578682835605413, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
303
+ [codecarbon DEBUG @ 11:54:56] EmissionsData(timestamp='2024-12-06T11:54:56', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.005169034004211426, emissions=0.00024284179958616934, emissions_rate=0.046980112606788055, cpu_power=42.5, gpu_power=82.04566114201081, ram_power=0.34102964401245117, cpu_energy=0.0002203760916303307, gpu_energy=0.00043572951524950554, ram_energy=1.7626766807049815e-06, energy_consumed=0.0006578682835605413, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
304
+
305
  0%| | 0/1000 [00:00<?, ?it/s]
306
  3%|▎ | 33/1000 [00:00<00:02, 325.92it/s]
307
  7%|▋ | 66/1000 [00:00<00:02, 326.72it/s]
308
  10%|▉ | 99/1000 [00:00<00:02, 327.75it/s]
309
  13%|█▎ | 132/1000 [00:00<00:02, 327.44it/s]
310
  16%|█▋ | 165/1000 [00:00<00:02, 320.79it/s]
311
  20%|█▉ | 198/1000 [00:00<00:02, 320.00it/s]
312
  23%|██▎ | 231/1000 [00:00<00:02, 315.45it/s]
313
  26%|██▋ | 263/1000 [00:00<00:02, 313.36it/s]
314
  30%|██▉ | 295/1000 [00:00<00:02, 309.30it/s]
315
  33%|███▎ | 326/1000 [00:01<00:02, 307.50it/s]
316
  36%|███▌ | 357/1000 [00:01<00:02, 306.98it/s]
317
  39%|███▉ | 388/1000 [00:01<00:01, 307.23it/s]
318
  42%|████▏ | 419/1000 [00:01<00:01, 306.67it/s]
319
  45%|████▌ | 450/1000 [00:01<00:01, 306.88it/s]
320
  48%|████▊ | 481/1000 [00:01<00:01, 305.78it/s]
321
  51%|█████ | 512/1000 [00:01<00:01, 305.73it/s]
322
  54%|█████▍ | 543/1000 [00:01<00:01, 306.05it/s]
323
  57%|█████▋ | 574/1000 [00:01<00:01, 306.76it/s]
324
  61%|██████ | 606/1000 [00:01<00:01, 307.81it/s]
325
  64%|██████▎ | 637/1000 [00:02<00:01, 307.53it/s]
326
  67%|██████▋ | 669/1000 [00:02<00:01, 308.34it/s]
327
  70%|███████ | 701/1000 [00:02<00:00, 308.94it/s]
328
  73%|███████▎ | 732/1000 [00:02<00:00, 308.72it/s]
329
  76%|███████▋ | 763/1000 [00:02<00:00, 307.97it/s]
330
  79%|███████▉ | 794/1000 [00:02<00:00, 307.11it/s]
331
  82%|████████▎ | 825/1000 [00:02<00:00, 306.59it/s]
332
  86%|████████▌ | 856/1000 [00:02<00:00, 306.58it/s]
333
  89%|████████▊ | 887/1000 [00:02<00:00, 306.47it/s]
334
  92%|█████████▏| 918/1000 [00:02<00:00, 306.92it/s]
335
  95%|█████████▍| 949/1000 [00:03<00:00, 306.27it/s]
336
  98%|█████████▊| 980/1000 [00:03<00:00, 306.93it/s]
337
+ [codecarbon WARNING @ 11:54:59] Background scheduler didn't run for a long period (3s), results might be inaccurate
338
+ [codecarbon INFO @ 11:54:59] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.34102964401245117 W
339
+ [codecarbon DEBUG @ 11:54:59] RAM : 0.34 W during 3.23 s [measurement time: 0.0004]
340
+ [codecarbon INFO @ 11:54:59] Energy consumed for all GPUs : 0.000512 kWh. Total GPU Power : 85.16727616836089 W
341
+ [codecarbon DEBUG @ 11:54:59] GPU : 85.17 W during 3.23 s [measurement time: 0.0023]
342
+ [codecarbon INFO @ 11:54:59] Energy consumed for all CPUs : 0.000259 kWh. Total CPU Power : 42.5 W
343
+ [codecarbon DEBUG @ 11:54:59] CPU : 42.50 W during 3.24 s [measurement time: 0.0000]
344
+ [codecarbon INFO @ 11:54:59] 0.000773 kWh of electricity used since the beginning.
345
+ [codecarbon DEBUG @ 11:54:59] EmissionsData(timestamp='2024-12-06T11:54:59', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.2372844429919496, emissions=0.000285311941280839, emissions_rate=8.81331085683497e-05, cpu_power=42.5, gpu_power=85.16727616836089, ram_power=0.34102964401245117, cpu_energy=0.00025859298852204426, gpu_energy=0.0005122595764728288, ram_energy=2.0690547987955964e-06, energy_consumed=0.0007729216197936687, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
346
+ [codecarbon INFO @ 11:54:59] 0.013140 g.CO2eq/s mean an estimation of 414.38445692833943 kg.CO2eq/year
347
+ [codecarbon DEBUG @ 11:54:59] last_duration=3.2341102859936655
348
+ ------------------------
349
+ [codecarbon DEBUG @ 11:54:59] EmissionsData(timestamp='2024-12-06T11:54:59', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.237630599993281, emissions=0.000285311941280839, emissions_rate=8.812368566118416e-05, cpu_power=42.5, gpu_power=85.16727616836089, ram_power=0.34102964401245117, cpu_energy=0.00025859298852204426, gpu_energy=0.0005122595764728288, ram_energy=2.0690547987955964e-06, energy_consumed=0.0007729216197936687, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
350
+ [codecarbon DEBUG @ 11:54:59] EmissionsData(timestamp='2024-12-06T11:54:59', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.005460618995130062, emissions=0.000285311941280839, emissions_rate=0.05224901087867299, cpu_power=42.5, gpu_power=85.16727616836089, ram_power=0.34102964401245117, cpu_energy=0.00025859298852204426, gpu_energy=0.0005122595764728288, ram_energy=2.0690547987955964e-06, energy_consumed=0.0007729216197936687, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
351
+
352
  0%| | 0/1000 [00:00<?, ?it/s]
353
  3%|▎ | 31/1000 [00:00<00:03, 307.34it/s]
354
  6%|▌ | 62/1000 [00:00<00:03, 308.89it/s]
355
  9%|▉ | 93/1000 [00:00<00:02, 305.80it/s]
356
  13%|█▎ | 126/1000 [00:00<00:02, 313.60it/s]
357
  16%|█▌ | 159/1000 [00:00<00:02, 318.74it/s]
358
  19%|█▉ | 192/1000 [00:00<00:02, 322.43it/s]
359
  22%|██▎ | 225/1000 [00:00<00:02, 324.85it/s]
360
  26%|██▌ | 258/1000 [00:00<00:02, 325.70it/s]
361
  29%|██▉ | 291/1000 [00:00<00:02, 325.78it/s]
362
  32%|███▏ | 324/1000 [00:01<00:02, 326.71it/s]
363
  36%|███▌ | 357/1000 [00:01<00:01, 327.65it/s]
364
  39%|███▉ | 391/1000 [00:01<00:01, 328.41it/s]
365
  42%|████▏ | 424/1000 [00:01<00:01, 326.39it/s]
366
  46%|████▌ | 457/1000 [00:01<00:01, 322.39it/s]
367
  49%|████▉ | 490/1000 [00:01<00:01, 320.61it/s]
368
  52%|█████▏ | 523/1000 [00:01<00:01, 319.54it/s]
369
  56%|█████▌ | 555/1000 [00:01<00:01, 317.62it/s]
370
  59%|█████▊ | 587/1000 [00:01<00:01, 317.53it/s]
371
  62%|██████▏ | 620/1000 [00:01<00:01, 319.20it/s]
372
  65%|██████▌ | 653/1000 [00:02<00:01, 321.46it/s]
373
  69%|██████▊ | 686/1000 [00:02<00:00, 322.83it/s]
374
  72%|███████▏ | 719/1000 [00:02<00:00, 322.78it/s]
375
  75%|███████▌ | 752/1000 [00:02<00:00, 318.29it/s]
376
  78%|███████▊ | 784/1000 [00:02<00:00, 316.84it/s]
377
  82%|████████▏ | 816/1000 [00:02<00:00, 316.92it/s]
378
  85%|████████▍ | 849/1000 [00:02<00:00, 319.96it/s]
379
  88%|████████▊ | 882/1000 [00:02<00:00, 321.79it/s]
380
  92%|█████████▏| 915/1000 [00:02<00:00, 322.97it/s]
381
  95%|█████████▍| 949/1000 [00:02<00:00, 325.17it/s]
382
  98%|█████████▊| 982/1000 [00:03<00:00, 326.10it/s]
383
+ [codecarbon WARNING @ 11:55:02] Background scheduler didn't run for a long period (3s), results might be inaccurate
384
+ [codecarbon INFO @ 11:55:02] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.34102964401245117 W
385
+ [codecarbon DEBUG @ 11:55:02] RAM : 0.34 W during 3.11 s [measurement time: 0.0004]
386
+ [codecarbon INFO @ 11:55:02] Energy consumed for all GPUs : 0.000585 kWh. Total GPU Power : 83.52648371244042 W
387
+ [codecarbon DEBUG @ 11:55:02] GPU : 83.53 W during 3.12 s [measurement time: 0.0023]
388
+ [codecarbon INFO @ 11:55:02] Energy consumed for all CPUs : 0.000295 kWh. Total CPU Power : 42.5 W
389
+ [codecarbon DEBUG @ 11:55:02] CPU : 42.50 W during 3.12 s [measurement time: 0.0000]
390
+ [codecarbon INFO @ 11:55:02] 0.000882 kWh of electricity used since the beginning.
391
+ [codecarbon DEBUG @ 11:55:02] last_duration=3.1142306780675426
392
+ ------------------------
393
+ [codecarbon DEBUG @ 11:55:02] EmissionsData(timestamp='2024-12-06T11:55:02', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.117404957069084, emissions=0.000325684342405636, emissions_rate=0.00010447290194593046, cpu_power=42.5, gpu_power=83.52648371244042, ram_power=0.34102964401245117, cpu_energy=0.0002953944923660149, gpu_energy=0.0005845335231811077, ram_energy=2.3640762017397193e-06, energy_consumed=0.0008822920917488623, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
394
+ [codecarbon DEBUG @ 11:55:02] EmissionsData(timestamp='2024-12-06T11:55:02', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.0061563539784401655, emissions=0.000325684342405636, emissions_rate=0.052902146878850295, cpu_power=42.5, gpu_power=83.52648371244042, ram_power=0.34102964401245117, cpu_energy=0.0002953944923660149, gpu_energy=0.0005845335231811077, ram_energy=2.3640762017397193e-06, energy_consumed=0.0008822920917488623, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
395
+
396
  0%| | 0/1000 [00:00<?, ?it/s]
397
  3%|▎ | 33/1000 [00:00<00:02, 327.90it/s]
398
  7%|▋ | 66/1000 [00:00<00:02, 324.40it/s]
399
  10%|▉ | 99/1000 [00:00<00:02, 324.89it/s]
400
  13%|█▎ | 132/1000 [00:00<00:02, 325.79it/s]
401
  16%|█▋ | 165/1000 [00:00<00:02, 326.63it/s]
402
  20%|█▉ | 198/1000 [00:00<00:02, 326.90it/s]
403
  23%|██▎ | 232/1000 [00:00<00:02, 328.78it/s]
404
  27%|██▋ | 266/1000 [00:00<00:02, 329.70it/s]
405
  30%|███ | 300/1000 [00:00<00:02, 330.30it/s]
406
  33%|███▎ | 334/1000 [00:01<00:02, 330.54it/s]
407
  37%|███▋ | 368/1000 [00:01<00:01, 330.89it/s]
408
  40%|████ | 402/1000 [00:01<00:01, 330.98it/s]
409
  44%|████▎ | 436/1000 [00:01<00:01, 330.48it/s]
410
  47%|████▋ | 470/1000 [00:01<00:01, 330.53it/s]
411
  50%|█████ | 504/1000 [00:01<00:01, 328.75it/s]
412
  54%|█████▍ | 538/1000 [00:01<00:01, 329.19it/s]
413
  57%|█████▋ | 571/1000 [00:01<00:01, 328.53it/s]
414
  60%|██████ | 604/1000 [00:01<00:01, 328.59it/s]
415
  64%|██████▍ | 638/1000 [00:01<00:01, 329.11it/s]
416
  67%|██████▋ | 671/1000 [00:02<00:01, 328.50it/s]
417
  70%|███████ | 704/1000 [00:02<00:00, 327.31it/s]
418
  74%|███████▎ | 737/1000 [00:02<00:00, 327.66it/s]
419
  77%|███████▋ | 770/1000 [00:02<00:00, 325.85it/s]
420
  80%|████████ | 803/1000 [00:02<00:00, 325.77it/s]
421
  84%|████████▎ | 836/1000 [00:02<00:00, 326.69it/s]
422
  87%|████████▋ | 870/1000 [00:02<00:00, 327.75it/s]
423
  90%|█████████ | 903/1000 [00:02<00:00, 328.17it/s]
424
  94%|████���████▎| 936/1000 [00:02<00:00, 328.22it/s]
425
  97%|█████████▋| 969/1000 [00:02<00:00, 324.66it/s]
426
+ [codecarbon WARNING @ 11:55:05] Background scheduler didn't run for a long period (3s), results might be inaccurate
427
+ [codecarbon INFO @ 11:55:05] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.34102964401245117 W
428
+ [codecarbon DEBUG @ 11:55:05] RAM : 0.34 W during 3.06 s [measurement time: 0.0004]
429
+ [codecarbon INFO @ 11:55:05] Energy consumed for all GPUs : 0.000657 kWh. Total GPU Power : 85.38302340193269 W
430
+ [codecarbon DEBUG @ 11:55:05] GPU : 85.38 W during 3.06 s [measurement time: 0.0028]
431
+ [codecarbon INFO @ 11:55:05] Energy consumed for all CPUs : 0.000332 kWh. Total CPU Power : 42.5 W
432
+ [codecarbon DEBUG @ 11:55:05] CPU : 42.50 W during 3.06 s [measurement time: 0.0000]
433
+ [codecarbon INFO @ 11:55:05] 0.000991 kWh of electricity used since the beginning.
434
+ [codecarbon DEBUG @ 11:55:05] last_duration=3.0558626130223274
435
+ ------------------------
436
+ [codecarbon DEBUG @ 11:55:05] EmissionsData(timestamp='2024-12-06T11:55:05', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.059523609932512, emissions=0.0003658843979281712, emissions_rate=0.0001195886826107029, cpu_power=42.5, gpu_power=85.38302340193269, ram_power=0.34102964401245117, cpu_energy=0.0003315126895208475, gpu_energy=0.000657029414512067, ram_energy=2.6535684451152707e-06, energy_consumed=0.0009911956724780297, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
437
+ [codecarbon DEBUG @ 11:55:05] EmissionsData(timestamp='2024-12-06T11:55:05', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=0.005146795068867505, emissions=0.0003658843979281712, emissions_rate=0.0710897545039966, cpu_power=42.5, gpu_power=85.38302340193269, ram_power=0.34102964401245117, cpu_energy=0.0003315126895208475, gpu_energy=0.000657029414512067, ram_energy=2.6535684451152707e-06, energy_consumed=0.0009911956724780297, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
438
+
439
  0%| | 0/1000 [00:00<?, ?it/s]
440
  3%|▎ | 33/1000 [00:00<00:02, 327.82it/s]
441
  7%|▋ | 66/1000 [00:00<00:02, 327.31it/s]
442
  10%|▉ | 99/1000 [00:00<00:02, 328.39it/s]
443
  13%|█▎ | 132/1000 [00:00<00:02, 328.29it/s]
444
  16%|█▋ | 165/1000 [00:00<00:02, 327.43it/s]
445
  20%|█▉ | 198/1000 [00:00<00:02, 328.12it/s]
446
  23%|██▎ | 231/1000 [00:00<00:02, 328.55it/s]
447
  26%|██▋ | 265/1000 [00:00<00:02, 329.40it/s]
448
  30%|██▉ | 299/1000 [00:00<00:02, 330.27it/s]
449
  33%|███▎ | 333/1000 [00:01<00:02, 330.64it/s]
450
  37%|███▋ | 367/1000 [00:01<00:01, 329.99it/s]
451
  40%|████ | 400/1000 [00:01<00:01, 326.81it/s]
452
  43%|████▎ | 433/1000 [00:01<00:01, 326.22it/s]
453
  47%|████▋ | 466/1000 [00:01<00:01, 324.07it/s]
454
  50%|████▉ | 499/1000 [00:01<00:01, 322.23it/s]
455
  53%|█████▎ | 532/1000 [00:01<00:01, 324.08it/s]
456
  56%|█████▋ | 565/1000 [00:01<00:01, 324.52it/s]
457
  60%|█████▉ | 598/1000 [00:01<00:01, 325.06it/s]
458
  63%|██████▎ | 631/1000 [00:01<00:01, 325.58it/s]
459
  66%|██████▋ | 665/1000 [00:02<00:01, 326.98it/s]
460
  70%|██████▉ | 699/1000 [00:02<00:00, 328.33it/s]
461
  73%|███████▎ | 733/1000 [00:02<00:00, 328.89it/s]
462
  77%|███████▋ | 767/1000 [00:02<00:00, 329.89it/s]
463
  80%|████████ | 800/1000 [00:02<00:00, 329.60it/s]
464
  83%|████████▎ | 833/1000 [00:02<00:00, 329.66it/s]
465
  87%|████████▋ | 867/1000 [00:02<00:00, 330.47it/s]
466
  90%|█████████ | 901/1000 [00:02<00:00, 329.36it/s]
467
  93%|█████████▎| 934/1000 [00:02<00:00, 328.30it/s]
468
  97%|█████████▋| 967/1000 [00:02<00:00, 326.14it/s]
469
+ [codecarbon WARNING @ 11:55:08] Background scheduler didn't run for a long period (3s), results might be inaccurate
470
+ [codecarbon INFO @ 11:55:08] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.34102964401245117 W
471
+ [codecarbon DEBUG @ 11:55:08] RAM : 0.34 W during 3.06 s [measurement time: 0.0004]
472
+ [codecarbon INFO @ 11:55:08] Energy consumed for all GPUs : 0.000727 kWh. Total GPU Power : 82.44288426325188 W
473
+ [codecarbon DEBUG @ 11:55:08] GPU : 82.44 W during 3.06 s [measurement time: 0.0041]
474
+ [codecarbon INFO @ 11:55:08] Energy consumed for all CPUs : 0.000368 kWh. Total CPU Power : 42.5 W
475
+ [codecarbon DEBUG @ 11:55:08] CPU : 42.50 W during 3.06 s [measurement time: 0.0000]
476
+ [codecarbon INFO @ 11:55:08] 0.001098 kWh of electricity used since the beginning.
477
+ [codecarbon DEBUG @ 11:55:08] last_duration=3.0590055210050195
478
+ ------------------------
479
+ [codecarbon DEBUG @ 11:55:08] EmissionsData(timestamp='2024-12-06T11:55:08', project_name='codecarbon', run_id='50f18221-7dc0-46e0-bca5-bfe7b7700d1e', duration=3.0640405940357596, emissions=0.0004052094001913277, emissions_rate=0.00013224674665866996, cpu_power=42.5, gpu_power=82.44288426325188, ram_power=0.34102964401245117, cpu_energy=0.0003676842035515519, gpu_energy=0.0007271011372349534, ram_energy=2.943357653133025e-06, energy_consumed=0.0010977286984396384, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "sentence_similarity_udever-bloom-7b1",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "sentence-similarity",
8
+ "model": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
9
+ "processor": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/sentence_similarity",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/forward_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:55:08",
3
+ "project_name": "codecarbon",
4
+ "run_id": "50f18221-7dc0-46e0-bca5-bfe7b7700d1e",
5
+ "duration": -1732784632.2426775,
6
+ "emissions": 3.932500226315651e-05,
7
+ "emissions_rate": 1.2855955403367746e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 82.44288426325188,
10
+ "ram_power": 0.34102964401245117,
11
+ "cpu_energy": 3.6171514030704384e-05,
12
+ "gpu_energy": 7.007172272288642e-05,
13
+ "ram_energy": 2.897892080177542e-07,
14
+ "energy_consumed": 0.00010653302596160875,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/2024-12-06-11-54-25/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:54:37",
3
+ "project_name": "codecarbon",
4
+ "run_id": "50f18221-7dc0-46e0-bca5-bfe7b7700d1e",
5
+ "duration": -1732784635.1402123,
6
+ "emissions": 2.163673245772878e-06,
7
+ "emissions_rate": 1.3402231572805124e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 87.50892425306003,
10
+ "ram_power": 0.2656216621398926,
11
+ "cpu_energy": 1.929911376969863e-06,
12
+ "gpu_energy": 3.919725356738013e-06,
13
+ "ram_energy": 1.184183714824478e-08,
14
+ "energy_consumed": 5.861478570856121e-06,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: sentence-similarity
6
+ model: sentence-transformers/paraphrase-MiniLM-L6-v2
7
+ processor: sentence-transformers/paraphrase-MiniLM-L6-v2
8
+ library: transformers
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/sentence_similarity
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: sentence_similarity_udever-bloom-7b1
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=sentence-transformers/paraphrase-MiniLM-L6-v2
125
+ - backend.processor=sentence-transformers/paraphrase-MiniLM-L6-v2
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=sentence-transformers/paraphrase-MiniLM-L6-v2,backend.processor=sentence-transformers/paraphrase-MiniLM-L6-v2
130
+ id: ???
131
+ num: ???
132
+ config_name: sentence_similarity
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=sentence-transformers/paraphrase-MiniLM-L6-v2
2
+ - backend.processor=sentence-transformers/paraphrase-MiniLM-L6-v2
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/benchmark_report.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "forward": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 3.4468999509513705e-05,
9
+ "ram": 2.763694540518881e-07,
10
+ "gpu": 6.661883107277334e-05,
11
+ "total": 0.00010136420003633896
12
+ },
13
+ "efficiency": {
14
+ "unit": "samples/kWh",
15
+ "value": 9865415.991459519
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 3.927416051309491e-05,
21
+ "ram": 3.1454335409563166e-07,
22
+ "gpu": 7.55081159606874e-05,
23
+ "total": 0.00011509681982787795
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 3.8126175777061784e-05,
28
+ "ram": 3.057966867990314e-07,
29
+ "gpu": 7.268783592984107e-05,
30
+ "total": 0.00011111980839370186
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 3.9340533294873444e-05,
35
+ "ram": 3.1546451760772435e-07,
36
+ "gpu": 7.464255971356692e-05,
37
+ "total": 0.0001142985575260481
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 3.8453094514099786e-05,
42
+ "ram": 3.084379334984966e-07,
43
+ "gpu": 7.504700448102142e-05,
44
+ "total": 0.0001138085369286197
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 3.7455039672123456e-05,
49
+ "ram": 3.0013881302259415e-07,
50
+ "gpu": 7.31953363342086e-05,
51
+ "total": 0.00011095051481935475
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 3.709253746904628e-05,
56
+ "ram": 2.9751805022184296e-07,
57
+ "gpu": 7.10145012572383e-05,
58
+ "total": 0.0001084045567765064
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 3.8820853530584546e-05,
70
+ "ram": 3.111883252272314e-07,
71
+ "gpu": 7.524200463748798e-05,
72
+ "total": 0.00011437404649329976
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 3.7991226943348794e-05,
77
+ "ram": 3.047267319411077e-07,
78
+ "gpu": 7.328005862383691e-05,
79
+ "total": 0.00011157601229912694
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 3.8136373380904024e-05,
84
+ "ram": 3.0588012810522036e-07,
85
+ "gpu": 7.557089378984472e-05,
86
+ "total": 0.00011401314729885415
87
+ }
88
+ ]
89
+ },
90
+ "preprocess": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 1.9664361006612634e-06,
97
+ "ram": 1.2095510410428298e-08,
98
+ "gpu": 3.7922252573707738e-06,
99
+ "total": 5.770756868442466e-06
100
+ },
101
+ "efficiency": {
102
+ "unit": "samples/kWh",
103
+ "value": 173287494.6557749
104
+ },
105
+ "measures": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/cli.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-06 11:37:43,622][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-06 11:37:43,623][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-06 11:37:43,634][device-isolation][INFO] - + Launched device(s) isolation process 181
4
+ [2024-12-06 11:37:43,634][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-12-06 11:37:43,639][process][INFO] - + Launched benchmark in isolated process 182.
6
+ [PROC-0][2024-12-06 11:37:46,360][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-12-06 11:37:47,287][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-12-06 11:37:47,288][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Using AutoModel class AutoModel
10
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-12-06 11:37:47,799][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-12-06 11:37:47,801][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-12-06 11:37:47,802][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-12-06 11:37:47,803][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-12-06 11:37:47,803][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-12-06 11:37:48,127][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-12-06 11:37:48,133][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-12-06 11:37:48,133][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-12-06 11:37:49,331][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-12-06 11:37:49,331][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-12-06 11:37:53,510][energy_star][INFO] - + Preprocessing dataset
25
+ [PROC-0][2024-12-06 11:37:53,677][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
26
+ [PROC-0][2024-12-06 11:37:53,677][energy_star][INFO] - + Preparing backend for Inference
27
+ [PROC-0][2024-12-06 11:37:53,678][energy_star][INFO] - + Initialising dataloader
28
+ [PROC-0][2024-12-06 11:37:53,678][energy_star][INFO] - + Warming up backend for Inference
29
+ [PROC-0][2024-12-06 11:37:54,356][energy_star][INFO] - + Running Inference energy tracking for 10 iterations
30
+ [PROC-0][2024-12-06 11:37:54,356][energy_star][INFO] - + Iteration 1/10
31
+ [PROC-0][2024-12-06 11:37:57,683][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
32
+ [PROC-0][2024-12-06 11:37:57,684][energy_star][INFO] - + Iteration 2/10
33
+ [PROC-0][2024-12-06 11:38:00,914][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
34
+ [PROC-0][2024-12-06 11:38:00,914][energy_star][INFO] - + Iteration 3/10
35
+ [PROC-0][2024-12-06 11:38:04,247][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
36
+ [PROC-0][2024-12-06 11:38:04,248][energy_star][INFO] - + Iteration 4/10
37
+ [PROC-0][2024-12-06 11:38:07,506][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
38
+ [PROC-0][2024-12-06 11:38:07,506][energy_star][INFO] - + Iteration 5/10
39
+ [PROC-0][2024-12-06 11:38:10,679][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
40
+ [PROC-0][2024-12-06 11:38:10,680][energy_star][INFO] - + Iteration 6/10
41
+ [PROC-0][2024-12-06 11:38:13,822][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
42
+ [PROC-0][2024-12-06 11:38:13,823][energy_star][INFO] - + Iteration 7/10
43
+ [PROC-0][2024-12-06 11:38:17,027][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
44
+ [PROC-0][2024-12-06 11:38:17,027][energy_star][INFO] - + Iteration 8/10
45
+ [PROC-0][2024-12-06 11:38:20,316][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
46
+ [PROC-0][2024-12-06 11:38:20,316][energy_star][INFO] - + Iteration 9/10
47
+ [PROC-0][2024-12-06 11:38:23,535][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
48
+ [PROC-0][2024-12-06 11:38:23,535][energy_star][INFO] - + Iteration 10/10
49
+ [PROC-0][2024-12-06 11:38:26,766][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
50
+ [PROC-0][2024-12-06 11:38:26,767][energy][INFO] - + forward energy consumption:
51
+ [PROC-0][2024-12-06 11:38:26,767][energy][INFO] - + CPU: 0.000034 (kWh)
52
+ [PROC-0][2024-12-06 11:38:26,767][energy][INFO] - + GPU: 0.000067 (kWh)
53
+ [PROC-0][2024-12-06 11:38:26,767][energy][INFO] - + RAM: 0.000000 (kWh)
54
+ [PROC-0][2024-12-06 11:38:26,767][energy][INFO] - + total: 0.000101 (kWh)
55
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + forward_iteration_1 energy consumption:
56
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + CPU: 0.000039 (kWh)
57
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + GPU: 0.000076 (kWh)
58
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + RAM: 0.000000 (kWh)
59
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + total: 0.000115 (kWh)
60
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + forward_iteration_2 energy consumption:
61
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + CPU: 0.000038 (kWh)
62
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + GPU: 0.000073 (kWh)
63
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + RAM: 0.000000 (kWh)
64
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + total: 0.000111 (kWh)
65
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + forward_iteration_3 energy consumption:
66
+ [PROC-0][2024-12-06 11:38:26,768][energy][INFO] - + CPU: 0.000039 (kWh)
67
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + GPU: 0.000075 (kWh)
68
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + RAM: 0.000000 (kWh)
69
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + total: 0.000114 (kWh)
70
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + forward_iteration_4 energy consumption:
71
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + CPU: 0.000038 (kWh)
72
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + GPU: 0.000075 (kWh)
73
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + RAM: 0.000000 (kWh)
74
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + total: 0.000114 (kWh)
75
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + forward_iteration_5 energy consumption:
76
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + CPU: 0.000037 (kWh)
77
+ [PROC-0][2024-12-06 11:38:26,769][energy][INFO] - + GPU: 0.000073 (kWh)
78
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + RAM: 0.000000 (kWh)
79
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + total: 0.000111 (kWh)
80
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + forward_iteration_6 energy consumption:
81
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + CPU: 0.000037 (kWh)
82
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + GPU: 0.000071 (kWh)
83
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + RAM: 0.000000 (kWh)
84
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + total: 0.000108 (kWh)
85
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + forward_iteration_7 energy consumption:
86
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + CPU: 0.000000 (kWh)
87
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + GPU: 0.000000 (kWh)
88
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + RAM: 0.000000 (kWh)
89
+ [PROC-0][2024-12-06 11:38:26,770][energy][INFO] - + total: 0.000000 (kWh)
90
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + forward_iteration_8 energy consumption:
91
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + CPU: 0.000039 (kWh)
92
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + GPU: 0.000075 (kWh)
93
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + RAM: 0.000000 (kWh)
94
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + total: 0.000114 (kWh)
95
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + forward_iteration_9 energy consumption:
96
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + CPU: 0.000038 (kWh)
97
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + GPU: 0.000073 (kWh)
98
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + RAM: 0.000000 (kWh)
99
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + total: 0.000112 (kWh)
100
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + forward_iteration_10 energy consumption:
101
+ [PROC-0][2024-12-06 11:38:26,771][energy][INFO] - + CPU: 0.000038 (kWh)
102
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + GPU: 0.000076 (kWh)
103
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + RAM: 0.000000 (kWh)
104
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + total: 0.000114 (kWh)
105
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + preprocess energy consumption:
106
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + CPU: 0.000002 (kWh)
107
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + GPU: 0.000004 (kWh)
108
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + total: 0.000006 (kWh)
110
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + forward energy efficiency: 9865415.991460 (samples/kWh)
111
+ [PROC-0][2024-12-06 11:38:26,772][energy][INFO] - + preprocess energy efficiency: 173287494.655775 (samples/kWh)
112
+ [2024-12-06 11:38:27,430][device-isolation][INFO] - + Closing device(s) isolation process...
113
+ [2024-12-06 11:38:27,482][datasets][INFO] - PyTorch version 2.4.0 available.
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/error.log ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/1000 [00:00<?, ?it/s]
1
  3%|▎ | 31/1000 [00:00<00:03, 309.49it/s]
2
  6%|▋ | 63/1000 [00:00<00:02, 313.68it/s]
3
  10%|▉ | 95/1000 [00:00<00:02, 308.36it/s]
4
  13%|█▎ | 126/1000 [00:00<00:02, 304.98it/s]
5
  16%|█▌ | 157/1000 [00:00<00:02, 303.16it/s]
6
  19%|█▉ | 188/1000 [00:00<00:02, 299.69it/s]
7
  22%|██▏ | 219/1000 [00:00<00:02, 299.91it/s]
8
  25%|██▌ | 250/1000 [00:00<00:02, 301.14it/s]
9
  28%|██▊ | 282/1000 [00:00<00:02, 306.70it/s]
10
  31%|███▏ | 313/1000 [00:01<00:02, 306.52it/s]
11
  34%|███▍ | 344/1000 [00:01<00:02, 304.79it/s]
12
  38%|███▊ | 375/1000 [00:01<00:02, 302.86it/s]
13
  41%|████ | 406/1000 [00:01<00:01, 302.18it/s]
14
  44%|████▎ | 437/1000 [00:01<00:01, 301.68it/s]
15
  47%|████▋ | 468/1000 [00:01<00:01, 301.42it/s]
16
  50%|████▉ | 499/1000 [00:01<00:01, 300.60it/s]
17
  53%|█████▎ | 530/1000 [00:01<00:01, 300.53it/s]
18
  56%|█████▌ | 561/1000 [00:01<00:01, 300.65it/s]
19
  59%|█████▉ | 592/1000 [00:01<00:01, 300.56it/s]
20
  62%|██████▏ | 623/1000 [00:02<00:01, 300.65it/s]
21
  65%|██████▌ | 654/1000 [00:02<00:01, 299.96it/s]
22
  68%|██████▊ | 685/1000 [00:02<00:01, 300.40it/s]
23
  72%|███████▏ | 716/1000 [00:02<00:00, 300.62it/s]
24
  75%|███████▍ | 747/1000 [00:02<00:00, 300.69it/s]
25
  78%|███████▊ | 778/1000 [00:02<00:00, 300.43it/s]
26
  81%|████████ | 809/1000 [00:02<00:00, 299.94it/s]
27
  84%|████████▍ | 839/1000 [00:02<00:00, 299.74it/s]
28
  87%|████████▋ | 870/1000 [00:02<00:00, 300.09it/s]
29
  90%|█████████ | 901/1000 [00:02<00:00, 299.09it/s]
30
  93%|█████████▎| 932/1000 [00:03<00:00, 299.45it/s]
31
  96%|█████████▌| 962/1000 [00:03<00:00, 299.13it/s]
32
  99%|█████████▉| 993/1000 [00:03<00:00, 299.59it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  0%| | 0/1000 [00:00<?, ?it/s]
34
  3%|▎ | 32/1000 [00:00<00:03, 318.82it/s]
35
  6%|▋ | 64/1000 [00:00<00:02, 319.51it/s]
36
  10%|▉ | 96/1000 [00:00<00:02, 318.95it/s]
37
  13%|█▎ | 128/1000 [00:00<00:02, 319.34it/s]
38
  16%|█▌ | 161/1000 [00:00<00:02, 319.72it/s]
39
  19%|█▉ | 194/1000 [00:00<00:02, 320.15it/s]
40
  23%|██▎ | 227/1000 [00:00<00:02, 320.13it/s]
41
  26%|██▌ | 260/1000 [00:00<00:02, 321.57it/s]
42
  29%|██▉ | 293/1000 [00:00<00:02, 320.50it/s]
43
  33%|███▎ | 326/1000 [00:01<00:02, 320.31it/s]
44
  36%|███▌ | 359/1000 [00:01<00:02, 320.38it/s]
45
  39%|███▉ | 392/1000 [00:01<00:01, 319.48it/s]
46
  42%|████▎ | 425/1000 [00:01<00:01, 319.71it/s]
47
  46%|████▌ | 457/1000 [00:01<00:01, 319.69it/s]
48
  49%|████▉ | 490/1000 [00:01<00:01, 319.95it/s]
49
  52%|█████▏ | 522/1000 [00:01<00:01, 314.02it/s]
50
  55%|█████▌ | 554/1000 [00:01<00:01, 310.47it/s]
51
  59%|█████▊ | 586/1000 [00:01<00:01, 307.91it/s]
52
  62%|██████▏ | 617/1000 [00:01<00:01, 305.31it/s]
53
  65%|██████▍ | 648/1000 [00:02<00:01, 304.22it/s]
54
  68%|██████▊ | 679/1000 [00:02<00:01, 303.44it/s]
55
  71%|███████ | 710/1000 [00:02<00:00, 302.68it/s]
56
  74%|███████▍ | 741/1000 [00:02<00:00, 302.41it/s]
57
  77%|███████▋ | 772/1000 [00:02<00:00, 302.14it/s]
58
  80%|████████ | 803/1000 [00:02<00:00, 302.12it/s]
59
  83%|████████▎ | 834/1000 [00:02<00:00, 302.00it/s]
60
  86%|████████▋ | 865/1000 [00:02<00:00, 302.03it/s]
61
  90%|████████▉ | 896/1000 [00:02<00:00, 303.48it/s]
62
  93%|█████████▎| 927/1000 [00:02<00:00, 302.29it/s]
63
  96%|█████████▌| 958/1000 [00:03<00:00, 301.99it/s]
64
  99%|█████████▉| 989/1000 [00:03<00:00, 300.76it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  0%| | 0/1000 [00:00<?, ?it/s]
66
  3%|▎ | 30/1000 [00:00<00:03, 299.65it/s]
67
  6%|▌ | 61/1000 [00:00<00:03, 300.89it/s]
68
  9%|▉ | 92/1000 [00:00<00:03, 301.43it/s]
69
  12%|█▏ | 123/1000 [00:00<00:02, 301.48it/s]
70
  15%|█▌ | 154/1000 [00:00<00:02, 301.18it/s]
71
  18%|█▊ | 185/1000 [00:00<00:02, 301.42it/s]
72
  22%|██▏ | 216/1000 [00:00<00:02, 300.81it/s]
73
  25%|██▍ | 247/1000 [00:00<00:02, 301.23it/s]
74
  28%|██▊ | 278/1000 [00:00<00:02, 301.44it/s]
75
  31%|███ | 309/1000 [00:01<00:02, 300.91it/s]
76
  34%|███▍ | 340/1000 [00:01<00:02, 301.04it/s]
77
  37%|███▋ | 371/1000 [00:01<00:02, 300.97it/s]
78
  40%|████ | 402/1000 [00:01<00:01, 301.08it/s]
79
  43%|████▎ | 433/1000 [00:01<00:01, 300.96it/s]
80
  46%|████▋ | 464/1000 [00:01<00:01, 301.07it/s]
81
  50%|████▉ | 495/1000 [00:01<00:01, 300.87it/s]
82
  53%|█████▎ | 526/1000 [00:01<00:01, 301.19it/s]
83
  56%|█████▌ | 557/1000 [00:01<00:01, 300.68it/s]
84
  59%|█████▉ | 588/1000 [00:01<00:01, 300.80it/s]
85
  62%|██████▏ | 619/1000 [00:02<00:01, 299.93it/s]
86
  65%|██████▌ | 650/1000 [00:02<00:01, 300.22it/s]
87
  68%|██████▊ | 681/1000 [00:02<00:01, 300.75it/s]
88
  71%|███████ | 712/1000 [00:02<00:00, 300.95it/s]
89
  74%|███████▍ | 743/1000 [00:02<00:00, 300.98it/s]
90
  77%|███████▋ | 774/1000 [00:02<00:00, 301.15it/s]
91
  80%|████████ | 805/1000 [00:02<00:00, 301.30it/s]
92
  84%|████████▎ | 836/1000 [00:02<00:00, 301.24it/s]
93
  87%|████████▋ | 867/1000 [00:02<00:00, 300.83it/s]
94
  90%|████████▉ | 898/1000 [00:02<00:00, 300.97it/s]
95
  93%|█████████▎| 929/1000 [00:03<00:00, 298.19it/s]
96
  96%|█████████▌| 960/1000 [00:03<00:00, 299.24it/s]
97
  99%|█████████▉| 991/1000 [00:03<00:00, 299.77it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  0%| | 0/1000 [00:00<?, ?it/s]
99
  3%|▎ | 31/1000 [00:00<00:03, 300.92it/s]
100
  6%|▌ | 62/1000 [00:00<00:03, 301.05it/s]
101
  9%|▉ | 93/1000 [00:00<00:03, 301.30it/s]
102
  12%|█▏ | 124/1000 [00:00<00:02, 301.70it/s]
103
  16%|█▌ | 155/1000 [00:00<00:02, 301.46it/s]
104
  19%|█▊ | 186/1000 [00:00<00:02, 301.39it/s]
105
  22%|██▏ | 217/1000 [00:00<00:02, 300.91it/s]
106
  25%|██▍ | 248/1000 [00:00<00:02, 301.46it/s]
107
  28%|██▊ | 279/1000 [00:00<00:02, 302.22it/s]
108
  31%|███ | 312/1000 [00:01<00:02, 307.83it/s]
109
  34%|███▍ | 343/1000 [00:01<00:02, 307.77it/s]
110
  38%|███▊ | 375/1000 [00:01<00:02, 308.92it/s]
111
  41%|████ | 407/1000 [00:01<00:01, 311.25it/s]
112
  44%|████▍ | 439/1000 [00:01<00:01, 313.59it/s]
113
  47%|████▋ | 471/1000 [00:01<00:01, 308.26it/s]
114
  50%|█████ | 502/1000 [00:01<00:01, 307.50it/s]
115
  53%|█████▎ | 533/1000 [00:01<00:01, 306.51it/s]
116
  56%|█████▋ | 564/1000 [00:01<00:01, 306.36it/s]
117
  60%|█████▉ | 595/1000 [00:01<00:01, 306.37it/s]
118
  63%|██████▎ | 627/1000 [00:02<00:01, 308.76it/s]
119
  66%|██████▌ | 659/1000 [00:02<00:01, 309.80it/s]
120
  69%|██████▉ | 690/1000 [00:02<00:01, 308.39it/s]
121
  72%|███████▏ | 721/1000 [00:02<00:00, 308.40it/s]
122
  75%|███████▌ | 754/1000 [00:02<00:00, 312.79it/s]
123
  79%|███████▊ | 786/1000 [00:02<00:00, 314.83it/s]
124
  82%|████████▏ | 818/1000 [00:02<00:00, 316.29it/s]
125
  85%|████████▌ | 850/1000 [00:02<00:00, 312.59it/s]
126
  88%|████████▊ | 882/1000 [00:02<00:00, 309.20it/s]
127
  91%|█████████▏| 913/1000 [00:02<00:00, 308.16it/s]
128
  94%|█████████▍| 944/1000 [00:03<00:00, 305.09it/s]
129
  98%|█████████▊| 975/1000 [00:03<00:00, 305.34it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  0%| | 0/1000 [00:00<?, ?it/s]
131
  3%|▎ | 32/1000 [00:00<00:03, 310.56it/s]
132
  6%|▋ | 64/1000 [00:00<00:02, 312.28it/s]
133
  10%|▉ | 97/1000 [00:00<00:02, 315.90it/s]
134
  13%|█▎ | 129/1000 [00:00<00:02, 313.15it/s]
135
  16%|█▌ | 161/1000 [00:00<00:02, 314.73it/s]
136
  19%|█▉ | 193/1000 [00:00<00:02, 313.98it/s]
137
  22%|██▎ | 225/1000 [00:00<00:02, 315.61it/s]
138
  26%|██▌ | 257/1000 [00:00<00:02, 316.63it/s]
139
  29%|██▉ | 289/1000 [00:00<00:02, 314.63it/s]
140
  32%|███▏ | 321/1000 [00:01<00:02, 315.27it/s]
141
  35%|███▌ | 353/1000 [00:01<00:02, 313.30it/s]
142
  38%|███▊ | 385/1000 [00:01<00:01, 313.75it/s]
143
  42%|████▏ | 417/1000 [00:01<00:01, 315.47it/s]
144
  45%|████▌ | 450/1000 [00:01<00:01, 317.02it/s]
145
  48%|████▊ | 483/1000 [00:01<00:01, 318.10it/s]
146
  52%|█████▏ | 515/1000 [00:01<00:01, 315.25it/s]
147
  55%|█████▍ | 547/1000 [00:01<00:01, 313.24it/s]
148
  58%|█████▊ | 579/1000 [00:01<00:01, 311.85it/s]
149
  61%|██████ | 611/1000 [00:01<00:01, 312.11it/s]
150
  64%|██████▍ | 643/1000 [00:02<00:01, 312.39it/s]
151
  68%|██████▊ | 675/1000 [00:02<00:01, 311.98it/s]
152
  71%|███████ | 708/1000 [00:02<00:00, 314.76it/s]
153
  74%|███████▍ | 741/1000 [00:02<00:00, 317.65it/s]
154
  77%|███████▋ | 774/1000 [00:02<00:00, 319.52it/s]
155
  81%|████████ | 807/1000 [00:02<00:00, 320.22it/s]
156
  84%|████████▍ | 840/1000 [00:02<00:00, 321.30it/s]
157
  87%|████████▋ | 873/1000 [00:02<00:00, 321.69it/s]
158
  91%|█████████ | 906/1000 [00:02<00:00, 321.62it/s]
159
  94%|█████████▍| 939/1000 [00:02<00:00, 320.89it/s]
160
  97%|█████████▋| 972/1000 [00:03<00:00, 318.08it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  0%| | 0/1000 [00:00<?, ?it/s]
162
  3%|▎ | 33/1000 [00:00<00:03, 322.23it/s]
163
  7%|▋ | 66/1000 [00:00<00:02, 323.08it/s]
164
  10%|▉ | 99/1000 [00:00<00:02, 323.18it/s]
165
  13%|█▎ | 132/1000 [00:00<00:02, 322.58it/s]
166
  16%|█▋ | 165/1000 [00:00<00:02, 321.36it/s]
167
  20%|��▉ | 198/1000 [00:00<00:02, 322.22it/s]
168
  23%|██▎ | 231/1000 [00:00<00:02, 321.27it/s]
169
  26%|██▋ | 264/1000 [00:00<00:02, 321.12it/s]
170
  30%|██▉ | 297/1000 [00:00<00:02, 321.83it/s]
171
  33%|███▎ | 330/1000 [00:01<00:02, 322.17it/s]
172
  36%|███▋ | 363/1000 [00:01<00:01, 322.68it/s]
173
  40%|███▉ | 396/1000 [00:01<00:01, 322.60it/s]
174
  43%|████▎ | 429/1000 [00:01<00:01, 322.27it/s]
175
  46%|████▌ | 462/1000 [00:01<00:01, 318.68it/s]
176
  49%|████▉ | 494/1000 [00:01<00:01, 316.95it/s]
177
  53%|█████▎ | 526/1000 [00:01<00:01, 314.89it/s]
178
  56%|█████▌ | 558/1000 [00:01<00:01, 314.08it/s]
179
  59%|█████▉ | 590/1000 [00:01<00:01, 313.05it/s]
180
  62%|██████▏ | 622/1000 [00:01<00:01, 312.73it/s]
181
  65%|██████▌ | 654/1000 [00:02<00:01, 312.57it/s]
182
  69%|██████▊ | 686/1000 [00:02<00:01, 312.58it/s]
183
  72%|███████▏ | 718/1000 [00:02<00:00, 312.21it/s]
184
  75%|███████▌ | 751/1000 [00:02<00:00, 315.20it/s]
185
  78%|███████▊ | 784/1000 [00:02<00:00, 317.37it/s]
186
  82%|████████▏ | 817/1000 [00:02<00:00, 319.12it/s]
187
  85%|████████▌ | 850/1000 [00:02<00:00, 320.60it/s]
188
  88%|████████▊ | 883/1000 [00:02<00:00, 321.67it/s]
189
  92%|█████████▏| 916/1000 [00:02<00:00, 322.21it/s]
190
  95%|█████████▍| 949/1000 [00:02<00:00, 322.53it/s]
191
  98%|█████████▊| 982/1000 [00:03<00:00, 319.94it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  0%| | 0/1000 [00:00<?, ?it/s]
193
  3%|▎ | 31/1000 [00:00<00:03, 307.72it/s]
194
  6%|▌ | 62/1000 [00:00<00:03, 306.33it/s]
195
  9%|▉ | 93/1000 [00:00<00:02, 307.36it/s]
196
  13%|█▎ | 126/1000 [00:00<00:02, 313.14it/s]
197
  16%|█▌ | 158/1000 [00:00<00:02, 314.38it/s]
198
  19%|█▉ | 191/1000 [00:00<00:02, 316.47it/s]
199
  22%|██▏ | 224/1000 [00:00<00:02, 318.30it/s]
200
  26%|██▌ | 257/1000 [00:00<00:02, 320.32it/s]
201
  29%|██▉ | 290/1000 [00:00<00:02, 321.78it/s]
202
  32%|███▏ | 323/1000 [00:01<00:02, 321.53it/s]
203
  36%|███▌ | 356/1000 [00:01<00:02, 321.19it/s]
204
  39%|███▉ | 389/1000 [00:01<00:01, 321.11it/s]
205
  42%|████▏ | 422/1000 [00:01<00:01, 321.48it/s]
206
  46%|████▌ | 455/1000 [00:01<00:01, 320.89it/s]
207
  49%|████▉ | 488/1000 [00:01<00:01, 317.74it/s]
208
  52%|█████▏ | 520/1000 [00:01<00:01, 316.42it/s]
209
  55%|█████▌ | 553/1000 [00:01<00:01, 318.97it/s]
210
  58%|█████▊ | 585/1000 [00:01<00:01, 317.81it/s]
211
  62%|██████▏ | 617/1000 [00:01<00:01, 314.22it/s]
212
  65%|██████▍ | 649/1000 [00:02<00:01, 311.58it/s]
213
  68%|██████▊ | 681/1000 [00:02<00:01, 307.91it/s]
214
  71%|███████ | 712/1000 [00:02<00:00, 307.36it/s]
215
  74%|███████▍ | 744/1000 [00:02<00:00, 308.83it/s]
216
  78%|███████▊ | 776/1000 [00:02<00:00, 309.51it/s]
217
  81%|████████ | 807/1000 [00:02<00:00, 308.06it/s]
218
  84%|████████▍ | 838/1000 [00:02<00:00, 307.04it/s]
219
  87%|████████▋ | 869/1000 [00:02<00:00, 306.94it/s]
220
  90%|█████████ | 900/1000 [00:02<00:00, 306.72it/s]
221
  93%|█████████▎| 931/1000 [00:02<00:00, 306.60it/s]
222
  96%|█████████▌| 962/1000 [00:03<00:00, 306.68it/s]
223
  99%|█████████▉| 993/1000 [00:03<00:00, 305.49it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
  0%| | 0/1000 [00:00<?, ?it/s]
225
  3%|▎ | 30/1000 [00:00<00:03, 299.08it/s]
226
  6%|▌ | 61/1000 [00:00<00:03, 302.45it/s]
227
  9%|▉ | 92/1000 [00:00<00:02, 302.73it/s]
228
  12%|█▏ | 123/1000 [00:00<00:02, 303.67it/s]
229
  15%|█▌ | 154/1000 [00:00<00:02, 304.46it/s]
230
  18%|█▊ | 185/1000 [00:00<00:02, 305.08it/s]
231
  22%|██▏ | 216/1000 [00:00<00:02, 305.64it/s]
232
  25%|██▍ | 247/1000 [00:00<00:02, 305.70it/s]
233
  28%|██▊ | 278/1000 [00:00<00:02, 303.91it/s]
234
  31%|███ | 309/1000 [00:01<00:02, 302.53it/s]
235
  34%|███▍ | 340/1000 [00:01<00:02, 302.72it/s]
236
  37%|███▋ | 371/1000 [00:01<00:02, 303.11it/s]
237
  40%|████ | 402/1000 [00:01<00:01, 303.88it/s]
238
  43%|████▎ | 433/1000 [00:01<00:01, 304.38it/s]
239
  46%|████▋ | 464/1000 [00:01<00:01, 305.03it/s]
240
  50%|████▉ | 495/1000 [00:01<00:01, 305.47it/s]
241
  53%|█████▎ | 526/1000 [00:01<00:01, 305.68it/s]
242
  56%|█████▌ | 557/1000 [00:01<00:01, 305.96it/s]
243
  59%|█████▉ | 588/1000 [00:01<00:01, 305.52it/s]
244
  62%|██████▏ | 619/1000 [00:02<00:01, 305.70it/s]
245
  65%|██████▌ | 650/1000 [00:02<00:01, 305.43it/s]
246
  68%|██████▊ | 681/1000 [00:02<00:01, 305.44it/s]
247
  71%|███████ | 712/1000 [00:02<00:00, 305.53it/s]
248
  74%|███████▍ | 743/1000 [00:02<00:00, 305.53it/s]
249
  77%|███████▋ | 774/1000 [00:02<00:00, 305.86it/s]
250
  80%|████████ | 805/1000 [00:02<00:00, 305.29it/s]
251
  84%|████████▎ | 836/1000 [00:02<00:00, 305.43it/s]
252
  87%|████████▋ | 867/1000 [00:02<00:00, 305.71it/s]
253
  90%|████████▉ | 898/1000 [00:02<00:00, 303.84it/s]
254
  93%|█████████▎| 929/1000 [00:03<00:00, 304.10it/s]
255
  96%|█████████▌| 960/1000 [00:03<00:00, 304.82it/s]
256
  99%|█████████▉| 991/1000 [00:03<00:00, 306.10it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
257
  0%| | 0/1000 [00:00<?, ?it/s]
258
  3%|▎ | 31/1000 [00:00<00:03, 305.18it/s]
259
  6%|▌ | 62/1000 [00:00<00:03, 306.07it/s]
260
  9%|▉ | 93/1000 [00:00<00:02, 305.63it/s]
261
  12%|█▏ | 124/1000 [00:00<00:02, 305.21it/s]
262
  16%|█▌ | 155/1000 [00:00<00:02, 304.81it/s]
263
  19%|█▊ | 186/1000 [00:00<00:02, 305.42it/s]
264
  22%|██▏ | 217/1000 [00:00<00:02, 305.58it/s]
265
  25%|██▍ | 248/1000 [00:00<00:02, 305.68it/s]
266
  28%|��█▊ | 279/1000 [00:00<00:02, 306.38it/s]
267
  31%|███ | 310/1000 [00:01<00:02, 307.48it/s]
268
  34%|███▍ | 341/1000 [00:01<00:02, 307.16it/s]
269
  37%|███▋ | 372/1000 [00:01<00:02, 306.54it/s]
270
  40%|████ | 403/1000 [00:01<00:01, 306.30it/s]
271
  43%|████▎ | 434/1000 [00:01<00:01, 306.09it/s]
272
  46%|████▋ | 465/1000 [00:01<00:01, 306.21it/s]
273
  50%|████▉ | 497/1000 [00:01<00:01, 309.01it/s]
274
  53%|█████▎ | 529/1000 [00:01<00:01, 312.15it/s]
275
  56%|█████▌ | 562/1000 [00:01<00:01, 314.81it/s]
276
  59%|█████▉ | 594/1000 [00:01<00:01, 315.62it/s]
277
  63%|██████▎ | 627/1000 [00:02<00:01, 317.80it/s]
278
  66%|██████▌ | 659/1000 [00:02<00:01, 318.38it/s]
279
  69%|██████▉ | 691/1000 [00:02<00:00, 318.81it/s]
280
  72%|███████▏ | 723/1000 [00:02<00:00, 319.01it/s]
281
  76%|███████▌ | 756/1000 [00:02<00:00, 319.47it/s]
282
  79%|███████▉ | 788/1000 [00:02<00:00, 319.53it/s]
283
  82%|████████▏ | 820/1000 [00:02<00:00, 319.24it/s]
284
  85%|████████▌ | 853/1000 [00:02<00:00, 319.37it/s]
285
  88%|████████▊ | 885/1000 [00:02<00:00, 315.40it/s]
286
  92%|█████████▏| 917/1000 [00:02<00:00, 312.55it/s]
287
  95%|█████████▍| 949/1000 [00:03<00:00, 311.80it/s]
288
  98%|█████████▊| 981/1000 [00:03<00:00, 310.17it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  0%| | 0/1000 [00:00<?, ?it/s]
290
  3%|▎ | 32/1000 [00:00<00:03, 318.65it/s]
291
  6%|▋ | 64/1000 [00:00<00:02, 319.05it/s]
292
  10%|▉ | 96/1000 [00:00<00:02, 319.24it/s]
293
  13%|█▎ | 128/1000 [00:00<00:02, 313.64it/s]
294
  16%|█▌ | 160/1000 [00:00<00:02, 310.27it/s]
295
  19%|█▉ | 192/1000 [00:00<00:02, 308.87it/s]
296
  22%|██▏ | 223/1000 [00:00<00:02, 308.24it/s]
297
  26%|██▌ | 255/1000 [00:00<00:02, 309.69it/s]
298
  29%|██▊ | 287/1000 [00:00<00:02, 310.49it/s]
299
  32%|███▏ | 320/1000 [00:01<00:02, 314.40it/s]
300
  35%|███▌ | 353/1000 [00:01<00:02, 316.40it/s]
301
  39%|███▊ | 386/1000 [00:01<00:01, 317.53it/s]
302
  42%|████▏ | 418/1000 [00:01<00:01, 318.05it/s]
303
  45%|████▌ | 450/1000 [00:01<00:01, 314.63it/s]
304
  48%|████▊ | 482/1000 [00:01<00:01, 311.78it/s]
305
  51%|█████▏ | 514/1000 [00:01<00:01, 310.12it/s]
306
  55%|█████▍ | 546/1000 [00:01<00:01, 309.03it/s]
307
  58%|█████▊ | 577/1000 [00:01<00:01, 308.93it/s]
308
  61%|██████ | 608/1000 [00:01<00:01, 308.00it/s]
309
  64%|██████▍ | 639/1000 [00:02<00:01, 307.47it/s]
310
  67%|██████▋ | 670/1000 [00:02<00:01, 307.10it/s]
311
  70%|███████ | 701/1000 [00:02<00:00, 306.96it/s]
312
  73%|███████▎ | 732/1000 [00:02<00:00, 306.84it/s]
313
  76%|███████▋ | 763/1000 [00:02<00:00, 306.35it/s]
314
  79%|███████▉ | 794/1000 [00:02<00:00, 306.48it/s]
315
  83%|████████▎ | 826/1000 [00:02<00:00, 310.22it/s]
316
  86%|████████▌ | 858/1000 [00:02<00:00, 309.67it/s]
317
  89%|████████▉ | 889/1000 [00:02<00:00, 308.19it/s]
318
  92%|█████████▏| 920/1000 [00:02<00:00, 307.32it/s]
319
  95%|█████████▌| 951/1000 [00:03<00:00, 307.28it/s]
320
  98%|█████████▊| 982/1000 [00:03<00:00, 307.05it/s]
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /opt/conda/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
2
+ warnings.warn(
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+ [codecarbon INFO @ 11:37:49] [setup] RAM Tracking...
11
+ [codecarbon INFO @ 11:37:49] [setup] GPU Tracking...
12
+ [codecarbon INFO @ 11:37:49] Tracking Nvidia GPU via pynvml
13
+ [codecarbon DEBUG @ 11:37:49] GPU available. Starting setup
14
+ [codecarbon INFO @ 11:37:49] [setup] CPU Tracking...
15
+ [codecarbon DEBUG @ 11:37:49] Not using PowerGadget, an exception occurred while instantiating IntelPowerGadget : Platform not supported by Intel Power Gadget
16
+ [codecarbon DEBUG @ 11:37:49] Not using the RAPL interface, an exception occurred while instantiating IntelRAPL : Intel RAPL files not found at /sys/class/powercap/intel-rapl on linux
17
+ [codecarbon DEBUG @ 11:37:49] Not using PowerMetrics, an exception occurred while instantiating Powermetrics : Platform not supported by Powermetrics
18
+ [codecarbon WARNING @ 11:37:49] No CPU tracking mode found. Falling back on CPU constant mode.
19
+ [codecarbon WARNING @ 11:37:50] We saw that you have a AMD EPYC 7R32 but we don't know it. Please contact us.
20
+ [codecarbon INFO @ 11:37:50] CPU Model on constant consumption mode: AMD EPYC 7R32
21
+ [codecarbon INFO @ 11:37:50] >>> Tracker's metadata:
22
+ [codecarbon INFO @ 11:37:50] Platform system: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
23
+ [codecarbon INFO @ 11:37:50] Python version: 3.9.20
24
+ [codecarbon INFO @ 11:37:50] CodeCarbon version: 2.5.1
25
+ [codecarbon INFO @ 11:37:50] Available RAM : 186.705 GB
26
+ [codecarbon INFO @ 11:37:50] CPU count: 48
27
+ [codecarbon INFO @ 11:37:50] CPU model: AMD EPYC 7R32
28
+ [codecarbon INFO @ 11:37:50] GPU count: 1
29
+ [codecarbon INFO @ 11:37:50] GPU model: 1 x NVIDIA A10G
30
+ [codecarbon DEBUG @ 11:37:51] Not running on AWS
31
+ [codecarbon DEBUG @ 11:37:52] Not running on Azure
32
+ [codecarbon DEBUG @ 11:37:53] Not running on GCP
33
+ [codecarbon INFO @ 11:37:53] Saving emissions data to file /runs/sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/codecarbon.csv
34
+ [codecarbon DEBUG @ 11:37:53] EmissionsData(timestamp='2024-12-06T11:37:53', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0021536439890041947, emissions=0.0, emissions_rate=0.0, cpu_power=0.0, gpu_power=0.0, ram_power=0.0, cpu_energy=0, gpu_energy=0, ram_energy=0, energy_consumed=0, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
35
+
36
+
37
+ [codecarbon INFO @ 11:37:53] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.26796913146972656 W
38
+ [codecarbon DEBUG @ 11:37:53] RAM : 0.27 W during 0.16 s [measurement time: 0.0005]
39
+ [codecarbon INFO @ 11:37:53] Energy consumed for all GPUs : 0.000004 kWh. Total GPU Power : 83.59350259699416 W
40
+ [codecarbon DEBUG @ 11:37:53] GPU : 83.59 W during 0.16 s [measurement time: 0.0032]
41
+ [codecarbon INFO @ 11:37:53] Energy consumed for all CPUs : 0.000002 kWh. Total CPU Power : 42.5 W
42
+ [codecarbon DEBUG @ 11:37:53] CPU : 42.50 W during 0.17 s [measurement time: 0.0000]
43
+ [codecarbon INFO @ 11:37:53] 0.000006 kWh of electricity used since the beginning.
44
+ [codecarbon DEBUG @ 11:37:53] last_duration=0.1624931920086965
45
+ ------------------------
46
+ [codecarbon DEBUG @ 11:37:53] EmissionsData(timestamp='2024-12-06T11:37:53', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.16667619696818292, emissions=2.1301847465912246e-06, emissions_rate=1.2780377674430974e-05, cpu_power=42.5, gpu_power=83.59350259699416, ram_power=0.26796913146972656, cpu_energy=1.9664361006612634e-06, gpu_energy=3.7922252573707738e-06, ram_energy=1.2095510410428298e-08, energy_consumed=5.770756868442466e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
47
+ [codecarbon DEBUG @ 11:37:54] EmissionsData(timestamp='2024-12-06T11:37:54', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0022446849616244435, emissions=2.1301847465912246e-06, emissions_rate=0.0009489905189410825, cpu_power=42.5, gpu_power=83.59350259699416, ram_power=0.26796913146972656, cpu_energy=1.9664361006612634e-06, gpu_energy=3.7922252573707738e-06, ram_energy=1.2095510410428298e-08, energy_consumed=5.770756868442466e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
48
+
49
  0%| | 0/1000 [00:00<?, ?it/s]
50
  3%|▎ | 31/1000 [00:00<00:03, 309.49it/s]
51
  6%|▋ | 63/1000 [00:00<00:02, 313.68it/s]
52
  10%|▉ | 95/1000 [00:00<00:02, 308.36it/s]
53
  13%|█▎ | 126/1000 [00:00<00:02, 304.98it/s]
54
  16%|█▌ | 157/1000 [00:00<00:02, 303.16it/s]
55
  19%|█▉ | 188/1000 [00:00<00:02, 299.69it/s]
56
  22%|██▏ | 219/1000 [00:00<00:02, 299.91it/s]
57
  25%|██▌ | 250/1000 [00:00<00:02, 301.14it/s]
58
  28%|██▊ | 282/1000 [00:00<00:02, 306.70it/s]
59
  31%|███▏ | 313/1000 [00:01<00:02, 306.52it/s]
60
  34%|███▍ | 344/1000 [00:01<00:02, 304.79it/s]
61
  38%|███▊ | 375/1000 [00:01<00:02, 302.86it/s]
62
  41%|████ | 406/1000 [00:01<00:01, 302.18it/s]
63
  44%|████▎ | 437/1000 [00:01<00:01, 301.68it/s]
64
  47%|████▋ | 468/1000 [00:01<00:01, 301.42it/s]
65
  50%|████▉ | 499/1000 [00:01<00:01, 300.60it/s]
66
  53%|█████▎ | 530/1000 [00:01<00:01, 300.53it/s]
67
  56%|█████▌ | 561/1000 [00:01<00:01, 300.65it/s]
68
  59%|█████▉ | 592/1000 [00:01<00:01, 300.56it/s]
69
  62%|██████▏ | 623/1000 [00:02<00:01, 300.65it/s]
70
  65%|██████▌ | 654/1000 [00:02<00:01, 299.96it/s]
71
  68%|██████▊ | 685/1000 [00:02<00:01, 300.40it/s]
72
  72%|███████▏ | 716/1000 [00:02<00:00, 300.62it/s]
73
  75%|███████▍ | 747/1000 [00:02<00:00, 300.69it/s]
74
  78%|███████▊ | 778/1000 [00:02<00:00, 300.43it/s]
75
  81%|████████ | 809/1000 [00:02<00:00, 299.94it/s]
76
  84%|████████▍ | 839/1000 [00:02<00:00, 299.74it/s]
77
  87%|████████▋ | 870/1000 [00:02<00:00, 300.09it/s]
78
  90%|█████████ | 901/1000 [00:02<00:00, 299.09it/s]
79
  93%|█████████▎| 932/1000 [00:03<00:00, 299.45it/s]
80
  96%|█████████▌| 962/1000 [00:03<00:00, 299.13it/s]
81
  99%|█████████▉| 993/1000 [00:03<00:00, 299.59it/s]
82
+ [codecarbon WARNING @ 11:37:57] Background scheduler didn't run for a long period (3s), results might be inaccurate
83
+ [codecarbon INFO @ 11:37:57] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.34110689163208013 W
84
+ [codecarbon DEBUG @ 11:37:57] RAM : 0.34 W during 3.32 s [measurement time: 0.0004]
85
+ [codecarbon INFO @ 11:37:57] Energy consumed for all GPUs : 0.000079 kWh. Total GPU Power : 81.8685446170856 W
86
+ [codecarbon DEBUG @ 11:37:57] GPU : 81.87 W during 3.32 s [measurement time: 0.0064]
87
+ [codecarbon INFO @ 11:37:57] Energy consumed for all CPUs : 0.000041 kWh. Total CPU Power : 42.5 W
88
+ [codecarbon DEBUG @ 11:37:57] CPU : 42.50 W during 3.33 s [measurement time: 0.0000]
89
+ [codecarbon INFO @ 11:37:57] 0.000121 kWh of electricity used since the beginning.
90
+ [codecarbon DEBUG @ 11:37:57] last_duration=3.319424900924787
91
+ ------------------------
92
+ [codecarbon DEBUG @ 11:37:57] EmissionsData(timestamp='2024-12-06T11:37:57', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.326852821977809, emissions=4.4616377730957537e-05, emissions_rate=1.3410986334055248e-05, cpu_power=42.5, gpu_power=81.8685446170856, ram_power=0.34110689163208013, cpu_energy=4.124059661375617e-05, gpu_energy=7.930034121805818e-05, ram_energy=3.2663886450605997e-07, energy_consumed=0.00012086757669632041, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
93
+ [codecarbon DEBUG @ 11:37:57] EmissionsData(timestamp='2024-12-06T11:37:57', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.00204054091591388, emissions=4.4616377730957537e-05, emissions_rate=0.021864975792938498, cpu_power=42.5, gpu_power=81.8685446170856, ram_power=0.34110689163208013, cpu_energy=4.124059661375617e-05, gpu_energy=7.930034121805818e-05, ram_energy=3.2663886450605997e-07, energy_consumed=0.00012086757669632041, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
94
+
95
  0%| | 0/1000 [00:00<?, ?it/s]
96
  3%|▎ | 32/1000 [00:00<00:03, 318.82it/s]
97
  6%|▋ | 64/1000 [00:00<00:02, 319.51it/s]
98
  10%|▉ | 96/1000 [00:00<00:02, 318.95it/s]
99
  13%|█▎ | 128/1000 [00:00<00:02, 319.34it/s]
100
  16%|█▌ | 161/1000 [00:00<00:02, 319.72it/s]
101
  19%|█▉ | 194/1000 [00:00<00:02, 320.15it/s]
102
  23%|██▎ | 227/1000 [00:00<00:02, 320.13it/s]
103
  26%|██▌ | 260/1000 [00:00<00:02, 321.57it/s]
104
  29%|██▉ | 293/1000 [00:00<00:02, 320.50it/s]
105
  33%|███▎ | 326/1000 [00:01<00:02, 320.31it/s]
106
  36%|███▌ | 359/1000 [00:01<00:02, 320.38it/s]
107
  39%|███▉ | 392/1000 [00:01<00:01, 319.48it/s]
108
  42%|████▎ | 425/1000 [00:01<00:01, 319.71it/s]
109
  46%|████▌ | 457/1000 [00:01<00:01, 319.69it/s]
110
  49%|████▉ | 490/1000 [00:01<00:01, 319.95it/s]
111
  52%|█████▏ | 522/1000 [00:01<00:01, 314.02it/s]
112
  55%|█████▌ | 554/1000 [00:01<00:01, 310.47it/s]
113
  59%|█████▊ | 586/1000 [00:01<00:01, 307.91it/s]
114
  62%|██████▏ | 617/1000 [00:01<00:01, 305.31it/s]
115
  65%|██████▍ | 648/1000 [00:02<00:01, 304.22it/s]
116
  68%|██████▊ | 679/1000 [00:02<00:01, 303.44it/s]
117
  71%|███████ | 710/1000 [00:02<00:00, 302.68it/s]
118
  74%|███████▍ | 741/1000 [00:02<00:00, 302.41it/s]
119
  77%|███████▋ | 772/1000 [00:02<00:00, 302.14it/s]
120
  80%|████████ | 803/1000 [00:02<00:00, 302.12it/s]
121
  83%|████████▎ | 834/1000 [00:02<00:00, 302.00it/s]
122
  86%|████████▋ | 865/1000 [00:02<00:00, 302.03it/s]
123
  90%|████████▉ | 896/1000 [00:02<00:00, 303.48it/s]
124
  93%|█████████▎| 927/1000 [00:02<00:00, 302.29it/s]
125
  96%|█████████▌| 958/1000 [00:03<00:00, 301.99it/s]
126
  99%|█████████▉| 989/1000 [00:03<00:00, 300.76it/s]
127
+ [codecarbon WARNING @ 11:38:00] Background scheduler didn't run for a long period (3s), results might be inaccurate
128
+ [codecarbon INFO @ 11:38:00] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34119415283203125 W
129
+ [codecarbon DEBUG @ 11:38:00] RAM : 0.34 W during 3.23 s [measurement time: 0.0004]
130
+ [codecarbon INFO @ 11:38:00] Energy consumed for all GPUs : 0.000152 kWh. Total GPU Power : 81.08423268913981 W
131
+ [codecarbon DEBUG @ 11:38:00] GPU : 81.08 W during 3.23 s [measurement time: 0.0023]
132
+ [codecarbon INFO @ 11:38:00] Energy consumed for all CPUs : 0.000079 kWh. Total CPU Power : 42.5 W
133
+ [codecarbon DEBUG @ 11:38:00] CPU : 42.50 W during 3.23 s [measurement time: 0.0000]
134
+ [codecarbon INFO @ 11:38:00] 0.000232 kWh of electricity used since the beginning.
135
+ [codecarbon DEBUG @ 11:38:00] last_duration=3.2264235879993066
136
+ ------------------------
137
+ [codecarbon DEBUG @ 11:38:00] EmissionsData(timestamp='2024-12-06T11:38:00', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.2296128219459206, emissions=8.56345190737049e-05, emissions_rate=2.6515413393147238e-05, cpu_power=42.5, gpu_power=81.08423268913981, ram_power=0.34119415283203125, cpu_energy=7.936677239081796e-05, gpu_energy=0.00015198817714789925, ram_energy=6.324355513050914e-07, energy_consumed=0.00023198738509002228, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
138
+ [codecarbon DEBUG @ 11:38:00] EmissionsData(timestamp='2024-12-06T11:38:00', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.002107362961396575, emissions=8.56345190737049e-05, emissions_rate=0.04063586607641328, cpu_power=42.5, gpu_power=81.08423268913981, ram_power=0.34119415283203125, cpu_energy=7.936677239081796e-05, gpu_energy=0.00015198817714789925, ram_energy=6.324355513050914e-07, energy_consumed=0.00023198738509002228, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
139
+
140
  0%| | 0/1000 [00:00<?, ?it/s]
141
  3%|▎ | 30/1000 [00:00<00:03, 299.65it/s]
142
  6%|▌ | 61/1000 [00:00<00:03, 300.89it/s]
143
  9%|▉ | 92/1000 [00:00<00:03, 301.43it/s]
144
  12%|█▏ | 123/1000 [00:00<00:02, 301.48it/s]
145
  15%|█▌ | 154/1000 [00:00<00:02, 301.18it/s]
146
  18%|█▊ | 185/1000 [00:00<00:02, 301.42it/s]
147
  22%|██▏ | 216/1000 [00:00<00:02, 300.81it/s]
148
  25%|██▍ | 247/1000 [00:00<00:02, 301.23it/s]
149
  28%|██▊ | 278/1000 [00:00<00:02, 301.44it/s]
150
  31%|███ | 309/1000 [00:01<00:02, 300.91it/s]
151
  34%|███▍ | 340/1000 [00:01<00:02, 301.04it/s]
152
  37%|███▋ | 371/1000 [00:01<00:02, 300.97it/s]
153
  40%|████ | 402/1000 [00:01<00:01, 301.08it/s]
154
  43%|████▎ | 433/1000 [00:01<00:01, 300.96it/s]
155
  46%|████▋ | 464/1000 [00:01<00:01, 301.07it/s]
156
  50%|████▉ | 495/1000 [00:01<00:01, 300.87it/s]
157
  53%|█████▎ | 526/1000 [00:01<00:01, 301.19it/s]
158
  56%|█████▌ | 557/1000 [00:01<00:01, 300.68it/s]
159
  59%|█████▉ | 588/1000 [00:01<00:01, 300.80it/s]
160
  62%|██████▏ | 619/1000 [00:02<00:01, 299.93it/s]
161
  65%|██████▌ | 650/1000 [00:02<00:01, 300.22it/s]
162
  68%|██████▊ | 681/1000 [00:02<00:01, 300.75it/s]
163
  71%|███████ | 712/1000 [00:02<00:00, 300.95it/s]
164
  74%|███████▍ | 743/1000 [00:02<00:00, 300.98it/s]
165
  77%|███████▋ | 774/1000 [00:02<00:00, 301.15it/s]
166
  80%|████████ | 805/1000 [00:02<00:00, 301.30it/s]
167
  84%|████████▎ | 836/1000 [00:02<00:00, 301.24it/s]
168
  87%|████████▋ | 867/1000 [00:02<00:00, 300.83it/s]
169
  90%|████████▉ | 898/1000 [00:02<00:00, 300.97it/s]
170
  93%|█████████▎| 929/1000 [00:03<00:00, 298.19it/s]
171
  96%|█████████▌| 960/1000 [00:03<00:00, 299.24it/s]
172
  99%|█████████▉| 991/1000 [00:03<00:00, 299.77it/s]
173
+ [codecarbon WARNING @ 11:38:04] Background scheduler didn't run for a long period (3s), results might be inaccurate
174
+ [codecarbon INFO @ 11:38:04] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34121274948120117 W
175
+ [codecarbon DEBUG @ 11:38:04] RAM : 0.34 W during 3.33 s [measurement time: 0.0004]
176
+ [codecarbon INFO @ 11:38:04] Energy consumed for all GPUs : 0.000227 kWh. Total GPU Power : 80.71816098274648 W
177
+ [codecarbon DEBUG @ 11:38:04] GPU : 80.72 W during 3.33 s [measurement time: 0.0033]
178
+ [codecarbon INFO @ 11:38:04] Energy consumed for all CPUs : 0.000119 kWh. Total CPU Power : 42.5 W
179
+ [codecarbon DEBUG @ 11:38:04] CPU : 42.50 W during 3.33 s [measurement time: 0.0000]
180
+ [codecarbon INFO @ 11:38:04] 0.000346 kWh of electricity used since the beginning.
181
+ [codecarbon DEBUG @ 11:38:04] last_duration=3.328249695012346
182
+ ------------------------
183
+ [codecarbon DEBUG @ 11:38:04] EmissionsData(timestamp='2024-12-06T11:38:04', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.332475626957603, emissions=0.00012782604599989163, emissions_rate=3.8357683688924965e-05, cpu_power=42.5, gpu_power=80.71816098274648, ram_power=0.34121274948120117, cpu_energy=0.0001187073056856914, gpu_energy=0.00022663073686146618, ram_energy=9.479000689128157e-07, energy_consumed=0.00034628594261607037, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
184
+ [codecarbon DEBUG @ 11:38:04] EmissionsData(timestamp='2024-12-06T11:38:04', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020879600197076797, emissions=0.00012782604599989163, emissions_rate=0.0612205429191061, cpu_power=42.5, gpu_power=80.71816098274648, ram_power=0.34121274948120117, cpu_energy=0.0001187073056856914, gpu_energy=0.00022663073686146618, ram_energy=9.479000689128157e-07, energy_consumed=0.00034628594261607037, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
185
+
186
  0%| | 0/1000 [00:00<?, ?it/s]
187
  3%|▎ | 31/1000 [00:00<00:03, 300.92it/s]
188
  6%|▌ | 62/1000 [00:00<00:03, 301.05it/s]
189
  9%|▉ | 93/1000 [00:00<00:03, 301.30it/s]
190
  12%|█▏ | 124/1000 [00:00<00:02, 301.70it/s]
191
  16%|█▌ | 155/1000 [00:00<00:02, 301.46it/s]
192
  19%|█▊ | 186/1000 [00:00<00:02, 301.39it/s]
193
  22%|██▏ | 217/1000 [00:00<00:02, 300.91it/s]
194
  25%|██▍ | 248/1000 [00:00<00:02, 301.46it/s]
195
  28%|██▊ | 279/1000 [00:00<00:02, 302.22it/s]
196
  31%|███ | 312/1000 [00:01<00:02, 307.83it/s]
197
  34%|███▍ | 343/1000 [00:01<00:02, 307.77it/s]
198
  38%|███▊ | 375/1000 [00:01<00:02, 308.92it/s]
199
  41%|████ | 407/1000 [00:01<00:01, 311.25it/s]
200
  44%|████▍ | 439/1000 [00:01<00:01, 313.59it/s]
201
  47%|████▋ | 471/1000 [00:01<00:01, 308.26it/s]
202
  50%|█████ | 502/1000 [00:01<00:01, 307.50it/s]
203
  53%|█████▎ | 533/1000 [00:01<00:01, 306.51it/s]
204
  56%|█████▋ | 564/1000 [00:01<00:01, 306.36it/s]
205
  60%|█████▉ | 595/1000 [00:01<00:01, 306.37it/s]
206
  63%|██████▎ | 627/1000 [00:02<00:01, 308.76it/s]
207
  66%|██████▌ | 659/1000 [00:02<00:01, 309.80it/s]
208
  69%|██████▉ | 690/1000 [00:02<00:01, 308.39it/s]
209
  72%|███████▏ | 721/1000 [00:02<00:00, 308.40it/s]
210
  75%|███████▌ | 754/1000 [00:02<00:00, 312.79it/s]
211
  79%|███████▊ | 786/1000 [00:02<00:00, 314.83it/s]
212
  82%|████████▏ | 818/1000 [00:02<00:00, 316.29it/s]
213
  85%|████████▌ | 850/1000 [00:02<00:00, 312.59it/s]
214
  88%|████████▊ | 882/1000 [00:02<00:00, 309.20it/s]
215
  91%|█████████▏| 913/1000 [00:02<00:00, 308.16it/s]
216
  94%|█████████▍| 944/1000 [00:03<00:00, 305.09it/s]
217
  98%|█████████▊| 975/1000 [00:03<00:00, 305.34it/s]
218
+ [codecarbon WARNING @ 11:38:07] Background scheduler didn't run for a long period (3s), results might be inaccurate
219
+ [codecarbon INFO @ 11:38:07] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34121274948120117 W
220
+ [codecarbon DEBUG @ 11:38:07] RAM : 0.34 W during 3.25 s [measurement time: 0.0004]
221
+ [codecarbon INFO @ 11:38:07] Energy consumed for all GPUs : 0.000302 kWh. Total GPU Power : 83.0039928170427 W
222
+ [codecarbon DEBUG @ 11:38:07] GPU : 83.00 W during 3.25 s [measurement time: 0.0023]
223
+ [codecarbon INFO @ 11:38:07] Energy consumed for all CPUs : 0.000157 kWh. Total CPU Power : 42.5 W
224
+ [codecarbon DEBUG @ 11:38:07] CPU : 42.50 W during 3.26 s [measurement time: 0.0000]
225
+ [codecarbon INFO @ 11:38:07] 0.000460 kWh of electricity used since the beginning.
226
+ [codecarbon DEBUG @ 11:38:07] last_duration=3.2541191610507667
227
+ ------------------------
228
+ [codecarbon DEBUG @ 11:38:07] EmissionsData(timestamp='2024-12-06T11:38:07', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.2573046219768003, emissions=0.00016983668947769296, emissions_rate=5.214025373365973e-05, cpu_power=42.5, gpu_power=83.0039928170427, ram_power=0.34121274948120117, cpu_energy=0.00015716040019979119, gpu_energy=0.0003016777413424876, ram_energy=1.2563380024113124e-06, energy_consumed=0.00046009447954469007, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
229
+ [codecarbon DEBUG @ 11:38:07] EmissionsData(timestamp='2024-12-06T11:38:07', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020206179469823837, emissions=0.00016983668947769296, emissions_rate=0.08405185637954429, cpu_power=42.5, gpu_power=83.0039928170427, ram_power=0.34121274948120117, cpu_energy=0.00015716040019979119, gpu_energy=0.0003016777413424876, ram_energy=1.2563380024113124e-06, energy_consumed=0.00046009447954469007, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
230
+
231
  0%| | 0/1000 [00:00<?, ?it/s]
232
  3%|▎ | 32/1000 [00:00<00:03, 310.56it/s]
233
  6%|▋ | 64/1000 [00:00<00:02, 312.28it/s]
234
  10%|▉ | 97/1000 [00:00<00:02, 315.90it/s]
235
  13%|█▎ | 129/1000 [00:00<00:02, 313.15it/s]
236
  16%|█▌ | 161/1000 [00:00<00:02, 314.73it/s]
237
  19%|█▉ | 193/1000 [00:00<00:02, 313.98it/s]
238
  22%|██▎ | 225/1000 [00:00<00:02, 315.61it/s]
239
  26%|██▌ | 257/1000 [00:00<00:02, 316.63it/s]
240
  29%|██▉ | 289/1000 [00:00<00:02, 314.63it/s]
241
  32%|███▏ | 321/1000 [00:01<00:02, 315.27it/s]
242
  35%|███▌ | 353/1000 [00:01<00:02, 313.30it/s]
243
  38%|███▊ | 385/1000 [00:01<00:01, 313.75it/s]
244
  42%|████▏ | 417/1000 [00:01<00:01, 315.47it/s]
245
  45%|████▌ | 450/1000 [00:01<00:01, 317.02it/s]
246
  48%|████▊ | 483/1000 [00:01<00:01, 318.10it/s]
247
  52%|█████▏ | 515/1000 [00:01<00:01, 315.25it/s]
248
  55%|█████▍ | 547/1000 [00:01<00:01, 313.24it/s]
249
  58%|█████▊ | 579/1000 [00:01<00:01, 311.85it/s]
250
  61%|██████ | 611/1000 [00:01<00:01, 312.11it/s]
251
  64%|██████▍ | 643/1000 [00:02<00:01, 312.39it/s]
252
  68%|██████▊ | 675/1000 [00:02<00:01, 311.98it/s]
253
  71%|███████ | 708/1000 [00:02<00:00, 314.76it/s]
254
  74%|███████▍ | 741/1000 [00:02<00:00, 317.65it/s]
255
  77%|███████▋ | 774/1000 [00:02<00:00, 319.52it/s]
256
  81%|████████ | 807/1000 [00:02<00:00, 320.22it/s]
257
  84%|████████▍ | 840/1000 [00:02<00:00, 321.30it/s]
258
  87%|████████▋ | 873/1000 [00:02<00:00, 321.69it/s]
259
  91%|█████████ | 906/1000 [00:02<00:00, 321.62it/s]
260
  94%|█████████▍| 939/1000 [00:02<00:00, 320.89it/s]
261
  97%|█████████▋| 972/1000 [00:03<00:00, 318.08it/s]
262
+ [codecarbon WARNING @ 11:38:10] Background scheduler didn't run for a long period (3s), results might be inaccurate
263
+ [codecarbon INFO @ 11:38:10] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.3412141799926758 W
264
+ [codecarbon DEBUG @ 11:38:10] RAM : 0.34 W during 3.17 s [measurement time: 0.0005]
265
+ [codecarbon INFO @ 11:38:10] Energy consumed for all GPUs : 0.000375 kWh. Total GPU Power : 83.19250468085731 W
266
+ [codecarbon DEBUG @ 11:38:10] GPU : 83.19 W during 3.17 s [measurement time: 0.0052]
267
+ [codecarbon INFO @ 11:38:10] Energy consumed for all CPUs : 0.000195 kWh. Total CPU Power : 42.5 W
268
+ [codecarbon DEBUG @ 11:38:10] CPU : 42.50 W during 3.17 s [measurement time: 0.0000]
269
+ [codecarbon INFO @ 11:38:10] 0.000571 kWh of electricity used since the beginning.
270
+ [codecarbon DEBUG @ 11:38:10] last_duration=3.1665348659735173
271
+ ------------------------
272
+ [codecarbon DEBUG @ 11:38:10] EmissionsData(timestamp='2024-12-06T11:38:10', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.1727622859179974, emissions=0.0002107923387421928, emissions_rate=6.643811283239671e-05, cpu_power=42.5, gpu_power=83.19250468085731, ram_power=0.3412141799926758, cpu_energy=0.00019461543987191464, gpu_energy=0.0003748730776766962, ram_energy=1.5564768154339065e-06, energy_consumed=0.0005710449943640448, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
273
+ [codecarbon DEBUG @ 11:38:10] EmissionsData(timestamp='2024-12-06T11:38:10', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.002038248931057751, emissions=0.0002107923387421928, emissions_rate=0.10341834872583593, cpu_power=42.5, gpu_power=83.19250468085731, ram_power=0.3412141799926758, cpu_energy=0.00019461543987191464, gpu_energy=0.0003748730776766962, ram_energy=1.5564768154339065e-06, energy_consumed=0.0005710449943640448, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
274
+
275
  0%| | 0/1000 [00:00<?, ?it/s]
276
  3%|▎ | 33/1000 [00:00<00:03, 322.23it/s]
277
  7%|▋ | 66/1000 [00:00<00:02, 323.08it/s]
278
  10%|▉ | 99/1000 [00:00<00:02, 323.18it/s]
279
  13%|█▎ | 132/1000 [00:00<00:02, 322.58it/s]
280
  16%|█▋ | 165/1000 [00:00<00:02, 321.36it/s]
281
  20%|��▉ | 198/1000 [00:00<00:02, 322.22it/s]
282
  23%|██▎ | 231/1000 [00:00<00:02, 321.27it/s]
283
  26%|██▋ | 264/1000 [00:00<00:02, 321.12it/s]
284
  30%|██▉ | 297/1000 [00:00<00:02, 321.83it/s]
285
  33%|███▎ | 330/1000 [00:01<00:02, 322.17it/s]
286
  36%|███▋ | 363/1000 [00:01<00:01, 322.68it/s]
287
  40%|███▉ | 396/1000 [00:01<00:01, 322.60it/s]
288
  43%|████▎ | 429/1000 [00:01<00:01, 322.27it/s]
289
  46%|████▌ | 462/1000 [00:01<00:01, 318.68it/s]
290
  49%|████▉ | 494/1000 [00:01<00:01, 316.95it/s]
291
  53%|█████▎ | 526/1000 [00:01<00:01, 314.89it/s]
292
  56%|█████▌ | 558/1000 [00:01<00:01, 314.08it/s]
293
  59%|█████▉ | 590/1000 [00:01<00:01, 313.05it/s]
294
  62%|██████▏ | 622/1000 [00:01<00:01, 312.73it/s]
295
  65%|██████▌ | 654/1000 [00:02<00:01, 312.57it/s]
296
  69%|██████▊ | 686/1000 [00:02<00:01, 312.58it/s]
297
  72%|███████▏ | 718/1000 [00:02<00:00, 312.21it/s]
298
  75%|███████▌ | 751/1000 [00:02<00:00, 315.20it/s]
299
  78%|███████▊ | 784/1000 [00:02<00:00, 317.37it/s]
300
  82%|████████▏ | 817/1000 [00:02<00:00, 319.12it/s]
301
  85%|████████▌ | 850/1000 [00:02<00:00, 320.60it/s]
302
  88%|████████▊ | 883/1000 [00:02<00:00, 321.67it/s]
303
  92%|█████████▏| 916/1000 [00:02<00:00, 322.21it/s]
304
  95%|█████████▍| 949/1000 [00:02<00:00, 322.53it/s]
305
  98%|█████████▊| 982/1000 [00:03<00:00, 319.94it/s]
306
+ [codecarbon WARNING @ 11:38:13] Background scheduler didn't run for a long period (3s), results might be inaccurate
307
+ [codecarbon INFO @ 11:38:13] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.3412141799926758 W
308
+ [codecarbon DEBUG @ 11:38:13] RAM : 0.34 W during 3.14 s [measurement time: 0.0004]
309
+ [codecarbon INFO @ 11:38:13] Energy consumed for all GPUs : 0.000446 kWh. Total GPU Power : 81.42635799357137 W
310
+ [codecarbon DEBUG @ 11:38:13] GPU : 81.43 W during 3.14 s [measurement time: 0.0022]
311
+ [codecarbon INFO @ 11:38:13] Energy consumed for all CPUs : 0.000232 kWh. Total CPU Power : 42.5 W
312
+ [codecarbon DEBUG @ 11:38:13] CPU : 42.50 W during 3.14 s [measurement time: 0.0000]
313
+ [codecarbon INFO @ 11:38:13] 0.000679 kWh of electricity used since the beginning.
314
+ [codecarbon DEBUG @ 11:38:13] last_duration=3.1388846959453076
315
+ ------------------------
316
+ [codecarbon DEBUG @ 11:38:13] EmissionsData(timestamp='2024-12-06T11:38:13', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.142057367018424, emissions=0.0002508081873684099, emissions_rate=7.982291793940351e-05, cpu_power=42.5, gpu_power=81.42635799357137, ram_power=0.3412141799926758, cpu_energy=0.00023170797734096092, gpu_energy=0.0004458875789339345, ram_energy=1.8539948656557495e-06, energy_consumed=0.0006794495511405512, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
317
+ [codecarbon DEBUG @ 11:38:13] EmissionsData(timestamp='2024-12-06T11:38:13', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020229590591043234, emissions=0.0002508081873684099, emissions_rate=0.12398085183170075, cpu_power=42.5, gpu_power=81.42635799357137, ram_power=0.3412141799926758, cpu_energy=0.00023170797734096092, gpu_energy=0.0004458875789339345, ram_energy=1.8539948656557495e-06, energy_consumed=0.0006794495511405512, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
318
+
319
  0%| | 0/1000 [00:00<?, ?it/s]
320
  3%|▎ | 31/1000 [00:00<00:03, 307.72it/s]
321
  6%|▌ | 62/1000 [00:00<00:03, 306.33it/s]
322
  9%|▉ | 93/1000 [00:00<00:02, 307.36it/s]
323
  13%|█▎ | 126/1000 [00:00<00:02, 313.14it/s]
324
  16%|█▌ | 158/1000 [00:00<00:02, 314.38it/s]
325
  19%|█▉ | 191/1000 [00:00<00:02, 316.47it/s]
326
  22%|██▏ | 224/1000 [00:00<00:02, 318.30it/s]
327
  26%|██▌ | 257/1000 [00:00<00:02, 320.32it/s]
328
  29%|██▉ | 290/1000 [00:00<00:02, 321.78it/s]
329
  32%|███▏ | 323/1000 [00:01<00:02, 321.53it/s]
330
  36%|███▌ | 356/1000 [00:01<00:02, 321.19it/s]
331
  39%|███▉ | 389/1000 [00:01<00:01, 321.11it/s]
332
  42%|████▏ | 422/1000 [00:01<00:01, 321.48it/s]
333
  46%|████▌ | 455/1000 [00:01<00:01, 320.89it/s]
334
  49%|████▉ | 488/1000 [00:01<00:01, 317.74it/s]
335
  52%|█████▏ | 520/1000 [00:01<00:01, 316.42it/s]
336
  55%|█████▌ | 553/1000 [00:01<00:01, 318.97it/s]
337
  58%|█████▊ | 585/1000 [00:01<00:01, 317.81it/s]
338
  62%|██████▏ | 617/1000 [00:01<00:01, 314.22it/s]
339
  65%|██████▍ | 649/1000 [00:02<00:01, 311.58it/s]
340
  68%|██████▊ | 681/1000 [00:02<00:01, 307.91it/s]
341
  71%|███████ | 712/1000 [00:02<00:00, 307.36it/s]
342
  74%|███████▍ | 744/1000 [00:02<00:00, 308.83it/s]
343
  78%|███████▊ | 776/1000 [00:02<00:00, 309.51it/s]
344
  81%|████████ | 807/1000 [00:02<00:00, 308.06it/s]
345
  84%|████████▍ | 838/1000 [00:02<00:00, 307.04it/s]
346
  87%|████████▋ | 869/1000 [00:02<00:00, 306.94it/s]
347
  90%|█████████ | 900/1000 [00:02<00:00, 306.72it/s]
348
  93%|█████████▎| 931/1000 [00:02<00:00, 306.60it/s]
349
  96%|█████████▌| 962/1000 [00:03<00:00, 306.68it/s]
350
  99%|█████████▉| 993/1000 [00:03<00:00, 305.49it/s]
351
+ [codecarbon WARNING @ 11:38:17] Background scheduler didn't run for a long period (3s), results might be inaccurate
352
+ [codecarbon INFO @ 11:38:17] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.3412156105041504 W
353
+ [codecarbon DEBUG @ 11:38:17] RAM : 0.34 W during 3.20 s [measurement time: 0.0004]
354
+ [codecarbon INFO @ 11:38:17] Energy consumed for all GPUs : 0.000519 kWh. Total GPU Power : 82.37376232926216 W
355
+ [codecarbon DEBUG @ 11:38:17] GPU : 82.37 W during 3.20 s [measurement time: 0.0023]
356
+ [codecarbon INFO @ 11:38:17] Energy consumed for all CPUs : 0.000270 kWh. Total CPU Power : 42.5 W
357
+ [codecarbon DEBUG @ 11:38:17] CPU : 42.50 W during 3.20 s [measurement time: 0.0000]
358
+ [codecarbon INFO @ 11:38:17] 0.000791 kWh of electricity used since the beginning.
359
+ [codecarbon DEBUG @ 11:38:17] EmissionsData(timestamp='2024-12-06T11:38:17', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.2032426630612463, emissions=0.00029191452505318387, emissions_rate=9.113094315939511e-05, cpu_power=42.5, gpu_power=82.37376232926216, ram_power=0.3412156105041504, cpu_energy=0.00026952306351959125, gpu_energy=0.0005191279153038408, ram_energy=2.1573081781853167e-06, energy_consumed=0.0007908082870016175, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
360
+ [codecarbon INFO @ 11:38:17] 0.012841 g.CO2eq/s mean an estimation of 404.9486086838621 kg.CO2eq/year
361
+ [codecarbon DEBUG @ 11:38:17] last_duration=3.200012721004896
362
+ ------------------------
363
+ [codecarbon DEBUG @ 11:38:17] EmissionsData(timestamp='2024-12-06T11:38:17', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.203582538990304, emissions=0.00029191452505318387, emissions_rate=9.11212748541165e-05, cpu_power=42.5, gpu_power=82.37376232926216, ram_power=0.3412156105041504, cpu_energy=0.00026952306351959125, gpu_energy=0.0005191279153038408, ram_energy=2.1573081781853167e-06, energy_consumed=0.0007908082870016175, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
364
+ [codecarbon DEBUG @ 11:38:17] EmissionsData(timestamp='2024-12-06T11:38:17', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020449289586395025, emissions=0.00029191452505318387, emissions_rate=0.14275044803874043, cpu_power=42.5, gpu_power=82.37376232926216, ram_power=0.3412156105041504, cpu_energy=0.00026952306351959125, gpu_energy=0.0005191279153038408, ram_energy=2.1573081781853167e-06, energy_consumed=0.0007908082870016175, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
365
+
366
  0%| | 0/1000 [00:00<?, ?it/s]
367
  3%|▎ | 30/1000 [00:00<00:03, 299.08it/s]
368
  6%|▌ | 61/1000 [00:00<00:03, 302.45it/s]
369
  9%|▉ | 92/1000 [00:00<00:02, 302.73it/s]
370
  12%|█▏ | 123/1000 [00:00<00:02, 303.67it/s]
371
  15%|█▌ | 154/1000 [00:00<00:02, 304.46it/s]
372
  18%|█▊ | 185/1000 [00:00<00:02, 305.08it/s]
373
  22%|██▏ | 216/1000 [00:00<00:02, 305.64it/s]
374
  25%|██▍ | 247/1000 [00:00<00:02, 305.70it/s]
375
  28%|██▊ | 278/1000 [00:00<00:02, 303.91it/s]
376
  31%|███ | 309/1000 [00:01<00:02, 302.53it/s]
377
  34%|███▍ | 340/1000 [00:01<00:02, 302.72it/s]
378
  37%|███▋ | 371/1000 [00:01<00:02, 303.11it/s]
379
  40%|████ | 402/1000 [00:01<00:01, 303.88it/s]
380
  43%|████▎ | 433/1000 [00:01<00:01, 304.38it/s]
381
  46%|████▋ | 464/1000 [00:01<00:01, 305.03it/s]
382
  50%|████▉ | 495/1000 [00:01<00:01, 305.47it/s]
383
  53%|█████▎ | 526/1000 [00:01<00:01, 305.68it/s]
384
  56%|█████▌ | 557/1000 [00:01<00:01, 305.96it/s]
385
  59%|█████▉ | 588/1000 [00:01<00:01, 305.52it/s]
386
  62%|██████▏ | 619/1000 [00:02<00:01, 305.70it/s]
387
  65%|██████▌ | 650/1000 [00:02<00:01, 305.43it/s]
388
  68%|██████▊ | 681/1000 [00:02<00:01, 305.44it/s]
389
  71%|███████ | 712/1000 [00:02<00:00, 305.53it/s]
390
  74%|███████▍ | 743/1000 [00:02<00:00, 305.53it/s]
391
  77%|███████▋ | 774/1000 [00:02<00:00, 305.86it/s]
392
  80%|████████ | 805/1000 [00:02<00:00, 305.29it/s]
393
  84%|████████▎ | 836/1000 [00:02<00:00, 305.43it/s]
394
  87%|████████▋ | 867/1000 [00:02<00:00, 305.71it/s]
395
  90%|████████▉ | 898/1000 [00:02<00:00, 303.84it/s]
396
  93%|█████████▎| 929/1000 [00:03<00:00, 304.10it/s]
397
  96%|█████████▌| 960/1000 [00:03<00:00, 304.82it/s]
398
  99%|█████████▉| 991/1000 [00:03<00:00, 306.10it/s]
399
+ [codecarbon WARNING @ 11:38:20] Background scheduler didn't run for a long period (3s), results might be inaccurate
400
+ [codecarbon INFO @ 11:38:20] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.3412156105041504 W
401
+ [codecarbon DEBUG @ 11:38:20] RAM : 0.34 W during 3.28 s [measurement time: 0.0004]
402
+ [codecarbon INFO @ 11:38:20] Energy consumed for all GPUs : 0.000594 kWh. Total GPU Power : 82.48475796224648 W
403
+ [codecarbon DEBUG @ 11:38:20] GPU : 82.48 W during 3.28 s [measurement time: 0.0044]
404
+ [codecarbon INFO @ 11:38:20] Energy consumed for all CPUs : 0.000308 kWh. Total CPU Power : 42.5 W
405
+ [codecarbon DEBUG @ 11:38:20] CPU : 42.50 W during 3.29 s [measurement time: 0.0000]
406
+ [codecarbon INFO @ 11:38:20] 0.000905 kWh of electricity used since the beginning.
407
+ [codecarbon DEBUG @ 11:38:20] last_duration=3.2831034610280767
408
+ ------------------------
409
+ [codecarbon DEBUG @ 11:38:20] EmissionsData(timestamp='2024-12-06T11:38:20', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.2884545139968395, emissions=0.00033413391755233464, emissions_rate=0.00010160819197289824, cpu_power=42.5, gpu_power=82.48475796224648, ram_power=0.3412156105041504, cpu_energy=0.0003083439170501758, gpu_energy=0.0005943699199413288, ram_energy=2.468496503412548e-06, energy_consumed=0.0009051823334949173, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
410
+ [codecarbon DEBUG @ 11:38:20] EmissionsData(timestamp='2024-12-06T11:38:20', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020385209936648607, emissions=0.00033413391755233464, emissions_rate=0.16390997129326956, cpu_power=42.5, gpu_power=82.48475796224648, ram_power=0.3412156105041504, cpu_energy=0.0003083439170501758, gpu_energy=0.0005943699199413288, ram_energy=2.468496503412548e-06, energy_consumed=0.0009051823334949173, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
411
+
412
  0%| | 0/1000 [00:00<?, ?it/s]
413
  3%|▎ | 31/1000 [00:00<00:03, 305.18it/s]
414
  6%|▌ | 62/1000 [00:00<00:03, 306.07it/s]
415
  9%|▉ | 93/1000 [00:00<00:02, 305.63it/s]
416
  12%|█▏ | 124/1000 [00:00<00:02, 305.21it/s]
417
  16%|█▌ | 155/1000 [00:00<00:02, 304.81it/s]
418
  19%|█▊ | 186/1000 [00:00<00:02, 305.42it/s]
419
  22%|██▏ | 217/1000 [00:00<00:02, 305.58it/s]
420
  25%|██▍ | 248/1000 [00:00<00:02, 305.68it/s]
421
  28%|��█▊ | 279/1000 [00:00<00:02, 306.38it/s]
422
  31%|███ | 310/1000 [00:01<00:02, 307.48it/s]
423
  34%|███▍ | 341/1000 [00:01<00:02, 307.16it/s]
424
  37%|███▋ | 372/1000 [00:01<00:02, 306.54it/s]
425
  40%|████ | 403/1000 [00:01<00:01, 306.30it/s]
426
  43%|████▎ | 434/1000 [00:01<00:01, 306.09it/s]
427
  46%|████▋ | 465/1000 [00:01<00:01, 306.21it/s]
428
  50%|████▉ | 497/1000 [00:01<00:01, 309.01it/s]
429
  53%|█████▎ | 529/1000 [00:01<00:01, 312.15it/s]
430
  56%|█████▌ | 562/1000 [00:01<00:01, 314.81it/s]
431
  59%|█████▉ | 594/1000 [00:01<00:01, 315.62it/s]
432
  63%|██████▎ | 627/1000 [00:02<00:01, 317.80it/s]
433
  66%|██████▌ | 659/1000 [00:02<00:01, 318.38it/s]
434
  69%|██████▉ | 691/1000 [00:02<00:00, 318.81it/s]
435
  72%|███████▏ | 723/1000 [00:02<00:00, 319.01it/s]
436
  76%|███████▌ | 756/1000 [00:02<00:00, 319.47it/s]
437
  79%|███████▉ | 788/1000 [00:02<00:00, 319.53it/s]
438
  82%|████████▏ | 820/1000 [00:02<00:00, 319.24it/s]
439
  85%|████████▌ | 853/1000 [00:02<00:00, 319.37it/s]
440
  88%|████████▊ | 885/1000 [00:02<00:00, 315.40it/s]
441
  92%|█████████▏| 917/1000 [00:02<00:00, 312.55it/s]
442
  95%|█████████▍| 949/1000 [00:03<00:00, 311.80it/s]
443
  98%|█████████▊| 981/1000 [00:03<00:00, 310.17it/s]
444
+ [codecarbon WARNING @ 11:38:23] Background scheduler didn't run for a long period (3s), results might be inaccurate
445
+ [codecarbon INFO @ 11:38:23] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.3412156105041504 W
446
+ [codecarbon DEBUG @ 11:38:23] RAM : 0.34 W during 3.22 s [measurement time: 0.0004]
447
+ [codecarbon INFO @ 11:38:23] Energy consumed for all GPUs : 0.000668 kWh. Total GPU Power : 82.03731960224725 W
448
+ [codecarbon DEBUG @ 11:38:23] GPU : 82.04 W during 3.22 s [measurement time: 0.0023]
449
+ [codecarbon INFO @ 11:38:23] Energy consumed for all CPUs : 0.000346 kWh. Total CPU Power : 42.5 W
450
+ [codecarbon DEBUG @ 11:38:23] CPU : 42.50 W during 3.22 s [measurement time: 0.0000]
451
+ [codecarbon INFO @ 11:38:23] 0.001017 kWh of electricity used since the beginning.
452
+ [codecarbon DEBUG @ 11:38:23] last_duration=3.2149330319371074
453
+ ------------------------
454
+ [codecarbon DEBUG @ 11:38:23] EmissionsData(timestamp='2024-12-06T11:38:23', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.218181503005326, emissions=0.0003753204594399024, emissions_rate=0.00011662501294268401, cpu_power=42.5, gpu_power=82.03731960224725, ram_power=0.3412156105041504, cpu_energy=0.0003463351439935246, gpu_energy=0.0006676499785651657, ram_energy=2.773223235353656e-06, energy_consumed=0.0010167583457940442, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
455
+ [codecarbon DEBUG @ 11:38:23] EmissionsData(timestamp='2024-12-06T11:38:23', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=0.0020393700106069446, emissions=0.0003753204594399024, emissions_rate=0.1840374515109212, cpu_power=42.5, gpu_power=82.03731960224725, ram_power=0.3412156105041504, cpu_energy=0.0003463351439935246, gpu_energy=0.0006676499785651657, ram_energy=2.773223235353656e-06, energy_consumed=0.0010167583457940442, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
456
+
457
  0%| | 0/1000 [00:00<?, ?it/s]
458
  3%|▎ | 32/1000 [00:00<00:03, 318.65it/s]
459
  6%|▋ | 64/1000 [00:00<00:02, 319.05it/s]
460
  10%|▉ | 96/1000 [00:00<00:02, 319.24it/s]
461
  13%|█▎ | 128/1000 [00:00<00:02, 313.64it/s]
462
  16%|█▌ | 160/1000 [00:00<00:02, 310.27it/s]
463
  19%|█▉ | 192/1000 [00:00<00:02, 308.87it/s]
464
  22%|██▏ | 223/1000 [00:00<00:02, 308.24it/s]
465
  26%|██▌ | 255/1000 [00:00<00:02, 309.69it/s]
466
  29%|██▊ | 287/1000 [00:00<00:02, 310.49it/s]
467
  32%|███▏ | 320/1000 [00:01<00:02, 314.40it/s]
468
  35%|███▌ | 353/1000 [00:01<00:02, 316.40it/s]
469
  39%|███▊ | 386/1000 [00:01<00:01, 317.53it/s]
470
  42%|████▏ | 418/1000 [00:01<00:01, 318.05it/s]
471
  45%|████▌ | 450/1000 [00:01<00:01, 314.63it/s]
472
  48%|████▊ | 482/1000 [00:01<00:01, 311.78it/s]
473
  51%|█████▏ | 514/1000 [00:01<00:01, 310.12it/s]
474
  55%|█████▍ | 546/1000 [00:01<00:01, 309.03it/s]
475
  58%|█████▊ | 577/1000 [00:01<00:01, 308.93it/s]
476
  61%|██████ | 608/1000 [00:01<00:01, 308.00it/s]
477
  64%|██████▍ | 639/1000 [00:02<00:01, 307.47it/s]
478
  67%|██████▋ | 670/1000 [00:02<00:01, 307.10it/s]
479
  70%|███████ | 701/1000 [00:02<00:00, 306.96it/s]
480
  73%|███████▎ | 732/1000 [00:02<00:00, 306.84it/s]
481
  76%|███████▋ | 763/1000 [00:02<00:00, 306.35it/s]
482
  79%|███████▉ | 794/1000 [00:02<00:00, 306.48it/s]
483
  83%|████████▎ | 826/1000 [00:02<00:00, 310.22it/s]
484
  86%|████████▌ | 858/1000 [00:02<00:00, 309.67it/s]
485
  89%|████████▉ | 889/1000 [00:02<00:00, 308.19it/s]
486
  92%|█████████▏| 920/1000 [00:02<00:00, 307.32it/s]
487
  95%|█████████▌| 951/1000 [00:03<00:00, 307.28it/s]
488
  98%|█████████▊| 982/1000 [00:03<00:00, 307.05it/s]
489
+ [codecarbon WARNING @ 11:38:26] Background scheduler didn't run for a long period (3s), results might be inaccurate
490
+ [codecarbon INFO @ 11:38:26] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.3412184715270996 W
491
+ [codecarbon DEBUG @ 11:38:26] RAM : 0.34 W during 3.23 s [measurement time: 0.0004]
492
+ [codecarbon INFO @ 11:38:26] Energy consumed for all GPUs : 0.000743 kWh. Total GPU Power : 84.2840975439887 W
493
+ [codecarbon DEBUG @ 11:38:26] GPU : 84.28 W during 3.23 s [measurement time: 0.0025]
494
+ [codecarbon INFO @ 11:38:26] Energy consumed for all CPUs : 0.000384 kWh. Total CPU Power : 42.5 W
495
+ [codecarbon DEBUG @ 11:38:26] CPU : 42.50 W during 3.23 s [measurement time: 0.0000]
496
+ [codecarbon INFO @ 11:38:26] 0.001131 kWh of electricity used since the beginning.
497
+ [codecarbon DEBUG @ 11:38:26] last_duration=3.227075955015607
498
+ ------------------------
499
+ [codecarbon DEBUG @ 11:38:26] EmissionsData(timestamp='2024-12-06T11:38:26', project_name='codecarbon', run_id='34ced19d-5612-4cb0-b87b-e0575cf3253d', duration=3.2304750490002334, emissions=0.0004174066316394302, emissions_rate=0.00012920905603917574, cpu_power=42.5, gpu_power=84.2840975439887, ram_power=0.3412184715270996, cpu_energy=0.0003844715173744286, gpu_energy=0.0007432208723550104, ram_energy=3.079103363458876e-06, energy_consumed=0.0011307714930928984, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "sentence_similarity_udever-bloom-7b1",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "sentence-similarity",
8
+ "model": "sentence-transformers/paraphrase-MiniLM-L6-v2",
9
+ "processor": "sentence-transformers/paraphrase-MiniLM-L6-v2",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/sentence_similarity",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/forward_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:38:26",
3
+ "project_name": "codecarbon",
4
+ "run_id": "34ced19d-5612-4cb0-b87b-e0575cf3253d",
5
+ "duration": -1732784632.0731199,
6
+ "emissions": 4.208617219952779e-05,
7
+ "emissions_rate": 1.3036088181474662e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 84.2840975439887,
10
+ "ram_power": 0.3412184715270996,
11
+ "cpu_energy": 3.8136373380904024e-05,
12
+ "gpu_energy": 7.557089378984472e-05,
13
+ "ram_energy": 3.0588012810522036e-07,
14
+ "energy_consumed": 0.00011401314729885415,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/paraphrase-MiniLM-L6-v2/2024-12-06-11-37-40/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:37:53",
3
+ "project_name": "codecarbon",
4
+ "run_id": "34ced19d-5612-4cb0-b87b-e0575cf3253d",
5
+ "duration": -1732784635.1371212,
6
+ "emissions": 2.1301847465912246e-06,
7
+ "emissions_rate": 1.2947676218352943e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 83.59350259699416,
10
+ "ram_power": 0.26796913146972656,
11
+ "cpu_energy": 1.9664361006612634e-06,
12
+ "gpu_energy": 3.7922252573707738e-06,
13
+ "ram_energy": 1.2095510410428298e-08,
14
+ "energy_consumed": 5.770756868442466e-06,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/config.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: text-generation
6
+ model: facebook/opt-125m
7
+ processor: facebook/opt-125m
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: false
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/text_generation
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs:
66
+ max_new_tokens: 10
67
+ min_new_tokens: 10
68
+ call_kwargs: {}
69
+ experiment_name: text_generation
70
+ environment:
71
+ cpu: ' AMD EPYC 7R32'
72
+ cpu_count: 48
73
+ cpu_ram_mb: 200472.73984
74
+ system: Linux
75
+ machine: x86_64
76
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
77
+ processor: x86_64
78
+ python_version: 3.9.20
79
+ gpu:
80
+ - NVIDIA A10G
81
+ gpu_count: 1
82
+ gpu_vram_mb: 24146608128
83
+ optimum_benchmark_version: 0.2.0
84
+ optimum_benchmark_commit: null
85
+ transformers_version: 4.44.0
86
+ transformers_commit: null
87
+ accelerate_version: 0.33.0
88
+ accelerate_commit: null
89
+ diffusers_version: 0.30.0
90
+ diffusers_commit: null
91
+ optimum_version: null
92
+ optimum_commit: null
93
+ timm_version: null
94
+ timm_commit: null
95
+ peft_version: null
96
+ peft_commit: null
text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/text_generation/facebook/opt-125m/2024-12-06-11-38-28
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${backend.model}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/text_generation/facebook/opt-125m/2024-12-06-11-38-28
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=facebook/opt-125m
125
+ - backend.processor=facebook/opt-125m
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=facebook/opt-125m,backend.processor=facebook/opt-125m
130
+ id: ???
131
+ num: ???
132
+ config_name: text_generation
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/text_generation/facebook/opt-125m/2024-12-06-11-38-28
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
text_generation/facebook/opt-125m/2024-12-06-11-38-28/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=facebook/opt-125m
2
+ - backend.processor=facebook/opt-125m
text_generation/facebook/opt-125m/2024-12-06-11-38-28/benchmark_report.json ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prefill": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 0.00015961811663645173,
9
+ "ram": 1.4629956913679388e-06,
10
+ "gpu": 0.0008433003413063744,
11
+ "total": 0.001004381453634194
12
+ },
13
+ "efficiency": {
14
+ "unit": "tokens/kWh",
15
+ "value": 299525642.2860714
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 0.00017775775790012432,
21
+ "ram": 1.628736405520292e-06,
22
+ "gpu": 0.0009053257242594981,
23
+ "total": 0.0010847122185651426
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 0.00017750304687619474,
28
+ "ram": 1.6267816700028285e-06,
29
+ "gpu": 0.0009313315783980869,
30
+ "total": 0.0011104614069442843
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 0.00017748282437177198,
35
+ "ram": 1.6267703432671715e-06,
36
+ "gpu": 0.0009362540823367738,
37
+ "total": 0.001115363677051813
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 0.00017734234650213497,
42
+ "ram": 1.6257317069958753e-06,
43
+ "gpu": 0.0009438043661536,
44
+ "total": 0.00112277244436273
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 0.0001778692368289436,
49
+ "ram": 1.630127784029496e-06,
50
+ "gpu": 0.0009538204852788112,
51
+ "total": 0.0011333198498917844
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 0.0001777150071745079,
56
+ "ram": 1.6287870340222759e-06,
57
+ "gpu": 0.0009490429814551504,
58
+ "total": 0.0011283867756636803
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 0.000176967954050148,
70
+ "ram": 1.622320821020758e-06,
71
+ "gpu": 0.0009375529722639442,
72
+ "total": 0.0011161432471351127
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 0.00017695565216628096,
77
+ "ram": 1.6218754447515748e-06,
78
+ "gpu": 0.000938151583854463,
79
+ "total": 0.0011167291114654952
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 0.00017658734049441085,
84
+ "ram": 1.618825704069116e-06,
85
+ "gpu": 0.0009377196390634168,
86
+ "total": 0.0011159258052618973
87
+ }
88
+ ]
89
+ },
90
+ "decode": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 0.0006670421107859714,
97
+ "ram": 6.123682284506015e-06,
98
+ "gpu": 0.001455102414081111,
99
+ "total": 0.002128268207151589
100
+ },
101
+ "efficiency": {
102
+ "unit": "tokens/kWh",
103
+ "value": 4228790.323398823
104
+ },
105
+ "measures": [
106
+ {
107
+ "unit": "kWh",
108
+ "cpu": 0.0007370514876859993,
109
+ "ram": 6.7653575920105514e-06,
110
+ "gpu": 0.0017596466854943316,
111
+ "total": 0.002503463530772341
112
+ },
113
+ {
114
+ "unit": "kWh",
115
+ "cpu": 0.0007383834340736537,
116
+ "ram": 6.778989960165064e-06,
117
+ "gpu": 0.0016500699311663425,
118
+ "total": 0.0023952323552001577
119
+ },
120
+ {
121
+ "unit": "kWh",
122
+ "cpu": 0.0007373868646430008,
123
+ "ram": 6.769671475726232e-06,
124
+ "gpu": 0.0015689462551549127,
125
+ "total": 0.00231310279127364
126
+ },
127
+ {
128
+ "unit": "kWh",
129
+ "cpu": 0.0007397144937226483,
130
+ "ram": 6.790784718125929e-06,
131
+ "gpu": 0.001561138471133816,
132
+ "total": 0.002307643749574593
133
+ },
134
+ {
135
+ "unit": "kWh",
136
+ "cpu": -0.0001778692368289436,
137
+ "ram": -1.630127784029496e-06,
138
+ "gpu": -0.0009538204852788112,
139
+ "total": -0.0011333198498917844
140
+ },
141
+ {
142
+ "unit": "kWh",
143
+ "cpu": 0.0007436416582792137,
144
+ "ram": 6.8266961433826635e-06,
145
+ "gpu": 0.0016269043570780184,
146
+ "total": 0.0023773727115006154
147
+ },
148
+ {
149
+ "unit": "kWh",
150
+ "cpu": 0.0009206054350879445,
151
+ "ram": 8.449086892235852e-06,
152
+ "gpu": 0.0025127681213241715,
153
+ "total": 0.0034418226433043514
154
+ },
155
+ {
156
+ "unit": "kWh",
157
+ "cpu": 0.0007393844037542289,
158
+ "ram": 6.787822469942927e-06,
159
+ "gpu": 0.001570666812089172,
160
+ "total": 0.002316839038313345
161
+ },
162
+ {
163
+ "unit": "kWh",
164
+ "cpu": 0.0007543674005729881,
165
+ "ram": 6.925673557496776e-06,
166
+ "gpu": 0.0016240760214820682,
167
+ "total": 0.002385369095612556
168
+ },
169
+ {
170
+ "unit": "kWh",
171
+ "cpu": 0.0007377551668689803,
172
+ "ram": 6.772867820003657e-06,
173
+ "gpu": 0.0016306279711670868,
174
+ "total": 0.002375156005856074
175
+ }
176
+ ]
177
+ },
178
+ "per_token": {
179
+ "memory": null,
180
+ "latency": null,
181
+ "throughput": null,
182
+ "energy": null,
183
+ "efficiency": null,
184
+ "measures": null
185
+ },
186
+ "preprocess": {
187
+ "memory": null,
188
+ "latency": null,
189
+ "throughput": null,
190
+ "energy": {
191
+ "unit": "kWh",
192
+ "cpu": 1.0703117998814884e-05,
193
+ "ram": 7.105618238450323e-08,
194
+ "gpu": 1.734556943233656e-05,
195
+ "total": 2.8119743613535947e-05
196
+ },
197
+ "efficiency": {
198
+ "unit": "samples/kWh",
199
+ "value": 35562201.908506446
200
+ },
201
+ "measures": null
202
+ }
203
+ }
text_generation/facebook/opt-125m/2024-12-06-11-38-28/cli.log ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-06 11:38:31,287][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-06 11:38:31,287][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-06 11:38:31,299][process][INFO] - + Launched benchmark in isolated process 430.
4
+ [PROC-0][2024-12-06 11:38:33,876][datasets][INFO] - PyTorch version 2.4.0 available.
5
+ [PROC-0][2024-12-06 11:38:34,773][backend][INFO] - َAllocating pytorch backend
6
+ [PROC-0][2024-12-06 11:38:34,773][backend][INFO] - + Setting random seed to 42
7
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Using AutoModel class AutoModelForCausalLM
8
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Creating backend temporary directory
9
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Loading model with random weights
10
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Creating no weights model
11
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Creating no weights model directory
12
+ [PROC-0][2024-12-06 11:38:35,560][pytorch][INFO] - + Creating no weights model state dict
13
+ [PROC-0][2024-12-06 11:38:35,583][pytorch][INFO] - + Saving no weights model safetensors
14
+ [PROC-0][2024-12-06 11:38:35,583][pytorch][INFO] - + Saving no weights model pretrained config
15
+ [PROC-0][2024-12-06 11:38:35,584][pytorch][INFO] - + Loading no weights AutoModel
16
+ [PROC-0][2024-12-06 11:38:35,584][pytorch][INFO] - + Loading model directly on device: cuda
17
+ [PROC-0][2024-12-06 11:38:35,743][pytorch][INFO] - + Turning on model's eval mode
18
+ [PROC-0][2024-12-06 11:38:35,750][benchmark][INFO] - Allocating energy_star benchmark
19
+ [PROC-0][2024-12-06 11:38:35,750][energy_star][INFO] - + Loading raw dataset
20
+ [PROC-0][2024-12-06 11:38:37,434][energy_star][INFO] - + Updating Text Generation kwargs with default values
21
+ [PROC-0][2024-12-06 11:38:37,434][energy_star][INFO] - + Initializing Text Generation report
22
+ [PROC-0][2024-12-06 11:38:37,434][energy][INFO] - + Tracking GPU energy on devices [0]
23
+ [PROC-0][2024-12-06 11:38:41,632][energy_star][INFO] - + Preprocessing dataset
24
+ [PROC-0][2024-12-06 11:38:42,539][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
25
+ [PROC-0][2024-12-06 11:38:42,540][energy_star][INFO] - + Preparing backend for Inference
26
+ [PROC-0][2024-12-06 11:38:42,540][energy_star][INFO] - + Initialising dataloader
27
+ [PROC-0][2024-12-06 11:38:42,540][energy_star][INFO] - + Warming up backend for Inference
28
+ [PROC-0][2024-12-06 11:38:43,292][energy_star][INFO] - + Additional warmup for Text Generation
29
+ [PROC-0][2024-12-06 11:38:43,366][energy_star][INFO] - + Running Text Generation energy tracking for 10 iterations
30
+ [PROC-0][2024-12-06 11:38:43,366][energy_star][INFO] - + Prefill iteration 1/10
31
+ [PROC-0][2024-12-06 11:38:58,424][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
32
+ [PROC-0][2024-12-06 11:38:58,424][energy_star][INFO] - + Prefill iteration 2/10
33
+ [PROC-0][2024-12-06 11:39:13,460][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
34
+ [PROC-0][2024-12-06 11:39:13,461][energy_star][INFO] - + Prefill iteration 3/10
35
+ [PROC-0][2024-12-06 11:39:28,495][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
36
+ [PROC-0][2024-12-06 11:39:28,496][energy_star][INFO] - + Prefill iteration 4/10
37
+ [PROC-0][2024-12-06 11:39:43,518][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
38
+ [PROC-0][2024-12-06 11:39:43,518][energy_star][INFO] - + Prefill iteration 5/10
39
+ [PROC-0][2024-12-06 11:39:58,586][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
40
+ [PROC-0][2024-12-06 11:39:58,586][energy_star][INFO] - + Prefill iteration 6/10
41
+ [PROC-0][2024-12-06 11:40:13,640][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
42
+ [PROC-0][2024-12-06 11:40:13,641][energy_star][INFO] - + Prefill iteration 7/10
43
+ [PROC-0][2024-12-06 11:40:28,665][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
44
+ [PROC-0][2024-12-06 11:40:28,666][energy_star][INFO] - + Prefill iteration 8/10
45
+ [PROC-0][2024-12-06 11:40:43,656][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
46
+ [PROC-0][2024-12-06 11:40:43,657][energy_star][INFO] - + Prefill iteration 9/10
47
+ [PROC-0][2024-12-06 11:40:58,647][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
48
+ [PROC-0][2024-12-06 11:40:58,647][energy_star][INFO] - + Prefill iteration 10/10
49
+ [PROC-0][2024-12-06 11:41:13,606][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
50
+ [PROC-0][2024-12-06 11:41:13,606][energy_star][INFO] - + Decoding iteration 1/10
51
+ [PROC-0][2024-12-06 11:42:31,096][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
52
+ [PROC-0][2024-12-06 11:42:31,097][energy_star][INFO] - + Decoding iteration 2/10
53
+ [PROC-0][2024-12-06 11:43:48,678][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
54
+ [PROC-0][2024-12-06 11:43:48,679][energy_star][INFO] - + Decoding iteration 3/10
55
+ [PROC-0][2024-12-06 11:45:06,174][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
56
+ [PROC-0][2024-12-06 11:45:06,174][energy_star][INFO] - + Decoding iteration 4/10
57
+ [PROC-0][2024-12-06 11:46:23,855][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
58
+ [PROC-0][2024-12-06 11:46:23,856][energy_star][INFO] - + Decoding iteration 5/10
59
+ [PROC-0][2024-12-06 11:47:41,227][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
60
+ [PROC-0][2024-12-06 11:47:41,228][energy_star][INFO] - + Decoding iteration 6/10
61
+ [PROC-0][2024-12-06 11:48:59,272][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
62
+ [PROC-0][2024-12-06 11:48:59,273][energy_star][INFO] - + Decoding iteration 7/10
63
+ [PROC-0][2024-12-06 11:50:17,254][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
64
+ [PROC-0][2024-12-06 11:50:17,255][energy_star][INFO] - + Decoding iteration 8/10
65
+ [PROC-0][2024-12-06 11:51:34,876][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
66
+ [PROC-0][2024-12-06 11:51:34,876][energy_star][INFO] - + Decoding iteration 9/10
67
+ [PROC-0][2024-12-06 11:52:53,765][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
68
+ [PROC-0][2024-12-06 11:52:53,766][energy_star][INFO] - + Decoding iteration 10/10
69
+ [PROC-0][2024-12-06 11:54:11,216][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
70
+ [PROC-0][2024-12-06 11:54:11,217][energy][INFO] - + prefill energy consumption:
71
+ [PROC-0][2024-12-06 11:54:11,217][energy][INFO] - + CPU: 0.000160 (kWh)
72
+ [PROC-0][2024-12-06 11:54:11,217][energy][INFO] - + GPU: 0.000843 (kWh)
73
+ [PROC-0][2024-12-06 11:54:11,217][energy][INFO] - + RAM: 0.000001 (kWh)
74
+ [PROC-0][2024-12-06 11:54:11,217][energy][INFO] - + total: 0.001004 (kWh)
75
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + prefill_iteration_1 energy consumption:
76
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + CPU: 0.000178 (kWh)
77
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + GPU: 0.000905 (kWh)
78
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + RAM: 0.000002 (kWh)
79
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + total: 0.001085 (kWh)
80
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + prefill_iteration_2 energy consumption:
81
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + CPU: 0.000178 (kWh)
82
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + GPU: 0.000931 (kWh)
83
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + RAM: 0.000002 (kWh)
84
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + total: 0.001110 (kWh)
85
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + prefill_iteration_3 energy consumption:
86
+ [PROC-0][2024-12-06 11:54:11,218][energy][INFO] - + CPU: 0.000177 (kWh)
87
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + GPU: 0.000936 (kWh)
88
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + RAM: 0.000002 (kWh)
89
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + total: 0.001115 (kWh)
90
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + prefill_iteration_4 energy consumption:
91
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + CPU: 0.000177 (kWh)
92
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + GPU: 0.000944 (kWh)
93
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + RAM: 0.000002 (kWh)
94
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + total: 0.001123 (kWh)
95
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + prefill_iteration_5 energy consumption:
96
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + CPU: 0.000178 (kWh)
97
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + GPU: 0.000954 (kWh)
98
+ [PROC-0][2024-12-06 11:54:11,219][energy][INFO] - + RAM: 0.000002 (kWh)
99
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + total: 0.001133 (kWh)
100
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + prefill_iteration_6 energy consumption:
101
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + CPU: 0.000178 (kWh)
102
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + GPU: 0.000949 (kWh)
103
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + RAM: 0.000002 (kWh)
104
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + total: 0.001128 (kWh)
105
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + prefill_iteration_7 energy consumption:
106
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + CPU: 0.000000 (kWh)
107
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + GPU: 0.000000 (kWh)
108
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + total: 0.000000 (kWh)
110
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + prefill_iteration_8 energy consumption:
111
+ [PROC-0][2024-12-06 11:54:11,220][energy][INFO] - + CPU: 0.000177 (kWh)
112
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + GPU: 0.000938 (kWh)
113
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + RAM: 0.000002 (kWh)
114
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + total: 0.001116 (kWh)
115
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + prefill_iteration_9 energy consumption:
116
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + CPU: 0.000177 (kWh)
117
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + GPU: 0.000938 (kWh)
118
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + RAM: 0.000002 (kWh)
119
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + total: 0.001117 (kWh)
120
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + prefill_iteration_10 energy consumption:
121
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + CPU: 0.000177 (kWh)
122
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + GPU: 0.000938 (kWh)
123
+ [PROC-0][2024-12-06 11:54:11,221][energy][INFO] - + RAM: 0.000002 (kWh)
124
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + total: 0.001116 (kWh)
125
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + decode energy consumption:
126
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + CPU: 0.000667 (kWh)
127
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + GPU: 0.001455 (kWh)
128
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + RAM: 0.000006 (kWh)
129
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + total: 0.002128 (kWh)
130
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + decode_iteration_1 energy consumption:
131
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + CPU: 0.000737 (kWh)
132
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + GPU: 0.001760 (kWh)
133
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + RAM: 0.000007 (kWh)
134
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + total: 0.002503 (kWh)
135
+ [PROC-0][2024-12-06 11:54:11,222][energy][INFO] - + decode_iteration_2 energy consumption:
136
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + CPU: 0.000738 (kWh)
137
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + GPU: 0.001650 (kWh)
138
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + RAM: 0.000007 (kWh)
139
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + total: 0.002395 (kWh)
140
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + decode_iteration_3 energy consumption:
141
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + CPU: 0.000737 (kWh)
142
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + GPU: 0.001569 (kWh)
143
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + RAM: 0.000007 (kWh)
144
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + total: 0.002313 (kWh)
145
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + decode_iteration_4 energy consumption:
146
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + CPU: 0.000740 (kWh)
147
+ [PROC-0][2024-12-06 11:54:11,223][energy][INFO] - + GPU: 0.001561 (kWh)
148
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + RAM: 0.000007 (kWh)
149
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + total: 0.002308 (kWh)
150
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + decode_iteration_5 energy consumption:
151
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + CPU: -0.000178 (kWh)
152
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + GPU: -0.000954 (kWh)
153
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + RAM: -0.000002 (kWh)
154
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + total: -0.001133 (kWh)
155
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + decode_iteration_6 energy consumption:
156
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + CPU: 0.000744 (kWh)
157
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + GPU: 0.001627 (kWh)
158
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + RAM: 0.000007 (kWh)
159
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + total: 0.002377 (kWh)
160
+ [PROC-0][2024-12-06 11:54:11,224][energy][INFO] - + decode_iteration_7 energy consumption:
161
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + CPU: 0.000921 (kWh)
162
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + GPU: 0.002513 (kWh)
163
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + RAM: 0.000008 (kWh)
164
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + total: 0.003442 (kWh)
165
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + decode_iteration_8 energy consumption:
166
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + CPU: 0.000739 (kWh)
167
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + GPU: 0.001571 (kWh)
168
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + RAM: 0.000007 (kWh)
169
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + total: 0.002317 (kWh)
170
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + decode_iteration_9 energy consumption:
171
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + CPU: 0.000754 (kWh)
172
+ [PROC-0][2024-12-06 11:54:11,225][energy][INFO] - + GPU: 0.001624 (kWh)
173
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + RAM: 0.000007 (kWh)
174
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + total: 0.002385 (kWh)
175
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + decode_iteration_10 energy consumption:
176
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + CPU: 0.000738 (kWh)
177
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + GPU: 0.001631 (kWh)
178
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + RAM: 0.000007 (kWh)
179
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + total: 0.002375 (kWh)
180
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + preprocess energy consumption:
181
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + CPU: 0.000011 (kWh)
182
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + GPU: 0.000017 (kWh)
183
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + RAM: 0.000000 (kWh)
184
+ [PROC-0][2024-12-06 11:54:11,226][energy][INFO] - + total: 0.000028 (kWh)
185
+ [PROC-0][2024-12-06 11:54:11,227][energy][INFO] - + prefill energy efficiency: 299525642.286071 (tokens/kWh)
186
+ [PROC-0][2024-12-06 11:54:11,227][energy][INFO] - + decode energy efficiency: 4228790.323399 (tokens/kWh)
187
+ [PROC-0][2024-12-06 11:54:11,227][energy][INFO] - + preprocess energy efficiency: 35562201.908506 (samples/kWh)
188
+ [2024-12-06 11:54:11,876][datasets][INFO] - PyTorch version 2.4.0 available.
text_generation/facebook/opt-125m/2024-12-06-11-38-28/error.log ADDED
The diff for this file is too large to render. See raw diff
 
text_generation/facebook/opt-125m/2024-12-06-11-38-28/experiment_config.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "text_generation",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "text-generation",
8
+ "model": "facebook/opt-125m",
9
+ "processor": "facebook/opt-125m",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": false,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/text_generation",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {
76
+ "max_new_tokens": 10,
77
+ "min_new_tokens": 10
78
+ },
79
+ "call_kwargs": {}
80
+ },
81
+ "environment": {
82
+ "cpu": " AMD EPYC 7R32",
83
+ "cpu_count": 48,
84
+ "cpu_ram_mb": 200472.73984,
85
+ "system": "Linux",
86
+ "machine": "x86_64",
87
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
88
+ "processor": "x86_64",
89
+ "python_version": "3.9.20",
90
+ "gpu": [
91
+ "NVIDIA A10G"
92
+ ],
93
+ "gpu_count": 1,
94
+ "gpu_vram_mb": 24146608128,
95
+ "optimum_benchmark_version": "0.2.0",
96
+ "optimum_benchmark_commit": null,
97
+ "transformers_version": "4.44.0",
98
+ "transformers_commit": null,
99
+ "accelerate_version": "0.33.0",
100
+ "accelerate_commit": null,
101
+ "diffusers_version": "0.30.0",
102
+ "diffusers_commit": null,
103
+ "optimum_version": null,
104
+ "optimum_commit": null,
105
+ "timm_version": null,
106
+ "timm_commit": null,
107
+ "peft_version": null,
108
+ "peft_commit": null
109
+ }
110
+ }
text_generation/facebook/opt-125m/2024-12-06-11-38-28/generate_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:54:11",
3
+ "project_name": "codecarbon",
4
+ "run_id": "9cda2a10-a20d-4c49-94a2-24281becc965",
5
+ "duration": -1732784557.8532782,
6
+ "emissions": 0.0012886783125127116,
7
+ "emissions_rate": 1.6639211053565298e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 119.38410406581427,
10
+ "ram_power": 0.390073299407959,
11
+ "cpu_energy": 0.0009143425073633912,
12
+ "gpu_energy": 0.0025683476102305036,
13
+ "ram_energy": 8.391693524072773e-06,
14
+ "energy_consumed": 0.0034910818111179714,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/facebook/opt-125m/2024-12-06-11-38-28/prefill_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:41:13",
3
+ "project_name": "codecarbon",
4
+ "run_id": "9cda2a10-a20d-4c49-94a2-24281becc965",
5
+ "duration": -1732784620.3468251,
6
+ "emissions": 0.0004119265778975735,
7
+ "emissions_rate": 2.7544871326692854e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 225.72072854514866,
10
+ "ram_power": 0.38968849182128906,
11
+ "cpu_energy": 0.00017658734049441085,
12
+ "gpu_energy": 0.0009377196390634168,
13
+ "ram_energy": 1.618825704069116e-06,
14
+ "energy_consumed": 0.0011159258052618973,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/facebook/opt-125m/2024-12-06-11-38-28/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-06T11:38:42",
3
+ "project_name": "codecarbon",
4
+ "run_id": "9cda2a10-a20d-4c49-94a2-24281becc965",
5
+ "duration": -1732784634.3970468,
6
+ "emissions": 1.0379964065229701e-05,
7
+ "emissions_rate": 1.1474858923913597e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 69.05202666503745,
10
+ "ram_power": 0.28311967849731445,
11
+ "cpu_energy": 1.0703117998814884e-05,
12
+ "gpu_energy": 1.734556943233656e-05,
13
+ "ram_energy": 7.105618238450323e-08,
14
+ "energy_consumed": 2.8119743613535947e-05,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/config.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: text-generation
6
+ model: meta-llama/Llama-3.1-8B-Instruct
7
+ processor: meta-llama/Llama-3.1-8B-Instruct
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: false
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/text_generation
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs:
66
+ max_new_tokens: 10
67
+ min_new_tokens: 10
68
+ call_kwargs: {}
69
+ experiment_name: text_generation
70
+ environment:
71
+ cpu: ' AMD EPYC 7R32'
72
+ cpu_count: 48
73
+ cpu_ram_mb: 200472.73984
74
+ system: Linux
75
+ machine: x86_64
76
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
77
+ processor: x86_64
78
+ python_version: 3.9.20
79
+ gpu:
80
+ - NVIDIA A10G
81
+ gpu_count: 1
82
+ gpu_vram_mb: 24146608128
83
+ optimum_benchmark_version: 0.2.0
84
+ optimum_benchmark_commit: null
85
+ transformers_version: 4.44.0
86
+ transformers_commit: null
87
+ accelerate_version: 0.33.0
88
+ accelerate_commit: null
89
+ diffusers_version: 0.30.0
90
+ diffusers_commit: null
91
+ optimum_version: null
92
+ optimum_commit: null
93
+ timm_version: null
94
+ timm_commit: null
95
+ peft_version: null
96
+ peft_commit: null
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${backend.model}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=meta-llama/Llama-3.1-8B-Instruct
125
+ - backend.processor=meta-llama/Llama-3.1-8B-Instruct
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=meta-llama/Llama-3.1-8B-Instruct,backend.processor=meta-llama/Llama-3.1-8B-Instruct
130
+ id: ???
131
+ num: ???
132
+ config_name: text_generation
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=meta-llama/Llama-3.1-8B-Instruct
2
+ - backend.processor=meta-llama/Llama-3.1-8B-Instruct
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/cli.log ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-06 11:54:15,706][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-06 11:54:15,706][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-06 11:54:15,719][process][INFO] - + Launched benchmark in isolated process 618.
4
+ [PROC-0][2024-12-06 11:54:18,276][datasets][INFO] - PyTorch version 2.4.0 available.
5
+ [PROC-0][2024-12-06 11:54:19,178][backend][INFO] - َAllocating pytorch backend
6
+ [PROC-0][2024-12-06 11:54:19,178][backend][INFO] - + Setting random seed to 42
7
+ [PROC-0][2024-12-06 11:54:20,438][pytorch][INFO] - + Using AutoModel class AutoModelForCausalLM
8
+ [PROC-0][2024-12-06 11:54:20,438][pytorch][INFO] - + Creating backend temporary directory
9
+ [PROC-0][2024-12-06 11:54:20,438][pytorch][INFO] - + Loading model with random weights
10
+ [PROC-0][2024-12-06 11:54:20,438][pytorch][INFO] - + Creating no weights model
11
+ [PROC-0][2024-12-06 11:54:20,438][pytorch][INFO] - + Creating no weights model directory
12
+ [PROC-0][2024-12-06 11:54:20,439][pytorch][INFO] - + Creating no weights model state dict
13
+ [PROC-0][2024-12-06 11:54:20,459][pytorch][INFO] - + Saving no weights model safetensors
14
+ [PROC-0][2024-12-06 11:54:20,459][pytorch][INFO] - + Saving no weights model pretrained config
15
+ [PROC-0][2024-12-06 11:54:20,460][pytorch][INFO] - + Loading no weights AutoModel
16
+ [PROC-0][2024-12-06 11:54:20,460][pytorch][INFO] - + Loading model directly on device: cuda
17
+ [2024-12-06 11:54:21,466][experiment][ERROR] - Error during experiment
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/error.log ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Error executing job with overrides: ['backend.model=meta-llama/Llama-3.1-8B-Instruct', 'backend.processor=meta-llama/Llama-3.1-8B-Instruct']
2
+ Traceback (most recent call last):
3
+ File "/optimum-benchmark/optimum_benchmark/cli.py", line 65, in benchmark_cli
4
+ benchmark_report: BenchmarkReport = launch(experiment_config=experiment_config)
5
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 102, in launch
6
+ raise error
7
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 90, in launch
8
+ report = launcher.launch(run, experiment_config.benchmark, experiment_config.backend)
9
+ File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 47, in launch
10
+ while not process_context.join():
11
+ File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 189, in join
12
+ raise ProcessRaisedException(msg, error_index, failed_process.pid)
13
+ torch.multiprocessing.spawn.ProcessRaisedException:
14
+
15
+ -- Process 0 terminated with the following error:
16
+ Traceback (most recent call last):
17
+ File "/opt/conda/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 76, in _wrap
18
+ fn(i, *args)
19
+ File "/optimum-benchmark/optimum_benchmark/launchers/process/launcher.py", line 63, in entrypoint
20
+ worker_output = worker(*worker_args)
21
+ File "/optimum-benchmark/optimum_benchmark/experiment.py", line 55, in run
22
+ backend: Backend = backend_factory(backend_config)
23
+ File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 81, in __init__
24
+ self.load_model_with_no_weights()
25
+ File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 246, in load_model_with_no_weights
26
+ self.load_model_from_pretrained()
27
+ File "/optimum-benchmark/optimum_benchmark/backends/pytorch/backend.py", line 204, in load_model_from_pretrained
28
+ self.pretrained_model = self.automodel_class.from_pretrained(
29
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained
30
+ return model_class.from_pretrained(
31
+ File "/opt/conda/lib/python3.9/site-packages/transformers/modeling_utils.py", line 3810, in from_pretrained
32
+ model = cls(config, *model_args, **model_kwargs)
33
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py", line 1116, in __init__
34
+ self.model = LlamaModel(config)
35
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py", line 902, in __init__
36
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
37
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py", line 902, in <listcomp>
38
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
39
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py", line 691, in __init__
40
+ self.mlp = LlamaMLP(config)
41
+ File "/opt/conda/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py", line 287, in __init__
42
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
43
+ File "/opt/conda/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 99, in __init__
44
+ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
45
+ File "/opt/conda/lib/python3.9/site-packages/torch/utils/_device.py", line 79, in __torch_function__
46
+ return func(*args, **kwargs)
47
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 224.00 MiB. GPU 0 has a total capacity of 22.19 GiB of which 69.50 MiB is free. Process 600116 has 22.12 GiB memory in use. Of the allocated memory 21.83 GiB is allocated by PyTorch, and 1.24 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
48
+
49
+
50
+ Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
text_generation/meta-llama/Llama-3.1-8B-Instruct/2024-12-06-11-54-12/experiment_config.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "text_generation",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "text-generation",
8
+ "model": "meta-llama/Llama-3.1-8B-Instruct",
9
+ "processor": "meta-llama/Llama-3.1-8B-Instruct",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": false,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/text_generation",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {
76
+ "max_new_tokens": 10,
77
+ "min_new_tokens": 10
78
+ },
79
+ "call_kwargs": {}
80
+ },
81
+ "environment": {
82
+ "cpu": " AMD EPYC 7R32",
83
+ "cpu_count": 48,
84
+ "cpu_ram_mb": 200472.73984,
85
+ "system": "Linux",
86
+ "machine": "x86_64",
87
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
88
+ "processor": "x86_64",
89
+ "python_version": "3.9.20",
90
+ "gpu": [
91
+ "NVIDIA A10G"
92
+ ],
93
+ "gpu_count": 1,
94
+ "gpu_vram_mb": 24146608128,
95
+ "optimum_benchmark_version": "0.2.0",
96
+ "optimum_benchmark_commit": null,
97
+ "transformers_version": "4.44.0",
98
+ "transformers_commit": null,
99
+ "accelerate_version": "0.33.0",
100
+ "accelerate_commit": null,
101
+ "diffusers_version": "0.30.0",
102
+ "diffusers_commit": null,
103
+ "optimum_version": null,
104
+ "optimum_commit": null,
105
+ "timm_version": null,
106
+ "timm_commit": null,
107
+ "peft_version": null,
108
+ "peft_commit": null
109
+ }
110
+ }