sasha HF staff commited on
Commit
fc07e79
1 Parent(s): ca2e11d

Upload folder using huggingface_hub

Browse files
Files changed (37) hide show
  1. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/config.yaml +94 -0
  2. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/hydra.yaml +175 -0
  3. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/overrides.yaml +2 -0
  4. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/benchmark_report.json +107 -0
  5. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/cli.log +113 -0
  6. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/error.log +0 -0
  7. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/experiment_config.json +107 -0
  8. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/forward_codecarbon.json +33 -0
  9. image_classification/microsoft/resnet-50/2024-12-03-18-37-27/preprocess_codecarbon.json +33 -0
  10. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/config.yaml +94 -0
  11. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/hydra.yaml +175 -0
  12. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/overrides.yaml +2 -0
  13. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/benchmark_report.json +107 -0
  14. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/cli.log +113 -0
  15. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/error.log +170 -0
  16. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/experiment_config.json +107 -0
  17. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/forward_codecarbon.json +33 -0
  18. sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/preprocess_codecarbon.json +33 -0
  19. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/config.yaml +94 -0
  20. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/hydra.yaml +175 -0
  21. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/overrides.yaml +2 -0
  22. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/benchmark_report.json +107 -0
  23. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/cli.log +113 -0
  24. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/error.log +0 -0
  25. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/experiment_config.json +107 -0
  26. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/forward_codecarbon.json +33 -0
  27. sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/preprocess_codecarbon.json +33 -0
  28. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/config.yaml +96 -0
  29. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/hydra.yaml +175 -0
  30. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/overrides.yaml +2 -0
  31. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/benchmark_report.json +203 -0
  32. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/cli.log +188 -0
  33. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/error.log +0 -0
  34. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/experiment_config.json +110 -0
  35. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/generate_codecarbon.json +33 -0
  36. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/prefill_codecarbon.json +33 -0
  37. text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/preprocess_codecarbon.json +33 -0
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: image-classification
6
+ model: microsoft/resnet-50
7
+ processor: microsoft/resnet-50
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/image_classification
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: image_classification
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/image_classification/microsoft/resnet-50/2024-12-03-18-37-27
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${backend.model}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/image_classification/microsoft/resnet-50/2024-12-03-18-37-27
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=microsoft/resnet-50
125
+ - backend.processor=microsoft/resnet-50
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=microsoft/resnet-50,backend.processor=microsoft/resnet-50
130
+ id: ???
131
+ num: ???
132
+ config_name: image_classification
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/image_classification/microsoft/resnet-50/2024-12-03-18-37-27
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=microsoft/resnet-50
2
+ - backend.processor=microsoft/resnet-50
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/benchmark_report.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "forward": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 0.00029326996768900746,
9
+ "ram": 4.099352655916485e-06,
10
+ "gpu": 0.0005152875511178934,
11
+ "total": 0.0008126568714628173
12
+ },
13
+ "efficiency": {
14
+ "unit": "samples/kWh",
15
+ "value": 1230531.6488617847
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 0.00032766355427754916,
21
+ "ram": 4.574859103787892e-06,
22
+ "gpu": 0.0005846093565757826,
23
+ "total": 0.0009168477699571195
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 0.0003235809050865808,
28
+ "ram": 4.523218486274697e-06,
29
+ "gpu": 0.0005703724007410926,
30
+ "total": 0.0008984765243139482
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 0.00033398171673874866,
35
+ "ram": 4.668879524099394e-06,
36
+ "gpu": 0.0005835515779537559,
37
+ "total": 0.0009222021742166043
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 0.00032490440953341824,
42
+ "ram": 4.5424303870416166e-06,
43
+ "gpu": 0.0005685418437195722,
44
+ "total": 0.0008979886836400323
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 0.0003226349349752936,
49
+ "ram": 4.510403811489515e-06,
50
+ "gpu": 0.0005671440648242765,
51
+ "total": 0.0008942894036110603
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 0.0003281232704515182,
56
+ "ram": 4.587466357088687e-06,
57
+ "gpu": 0.0005724782357603431,
58
+ "total": 0.0009051889725689502
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 0.00032681702031970607,
70
+ "ram": 4.569198582007998e-06,
71
+ "gpu": 0.000573035458426574,
72
+ "total": 0.0009044216773282879
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 0.0003248493934032417,
77
+ "ram": 4.541682951047131e-06,
78
+ "gpu": 0.0005708376788930991,
79
+ "total": 0.0009002287552473875
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 0.0003201444721040187,
84
+ "ram": 4.475387356327922e-06,
85
+ "gpu": 0.0005623048942844378,
86
+ "total": 0.0008869247537447843
87
+ }
88
+ ]
89
+ },
90
+ "preprocess": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 9.686615021411045e-05,
97
+ "ram": 7.841612635117118e-07,
98
+ "gpu": 0.00016168374046188205,
99
+ "total": 0.00025933405193950425
100
+ },
101
+ "efficiency": {
102
+ "unit": "samples/kWh",
103
+ "value": 3856030.446141618
104
+ },
105
+ "measures": null
106
+ }
107
+ }
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/cli.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-03 18:37:30,170][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-03 18:37:30,170][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-03 18:37:30,183][device-isolation][INFO] - + Launched device(s) isolation process 885
4
+ [2024-12-03 18:37:30,183][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-12-03 18:37:30,190][process][INFO] - + Launched benchmark in isolated process 886.
6
+ [PROC-0][2024-12-03 18:37:32,762][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-12-03 18:37:33,678][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-12-03 18:37:33,678][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-12-03 18:37:34,208][pytorch][INFO] - + Using AutoModel class AutoModelForImageClassification
10
+ [PROC-0][2024-12-03 18:37:34,208][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-12-03 18:37:34,208][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-12-03 18:37:34,209][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-12-03 18:37:34,209][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-12-03 18:37:34,209][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-12-03 18:37:34,211][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-12-03 18:37:34,211][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-12-03 18:37:34,215][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-12-03 18:37:34,215][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-12-03 18:37:34,393][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-12-03 18:37:34,399][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-12-03 18:37:34,399][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-12-03 18:37:36,674][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-12-03 18:37:36,674][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-12-03 18:37:40,864][energy_star][INFO] - + Preprocessing dataset
25
+ [PROC-0][2024-12-03 18:37:49,070][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
26
+ [PROC-0][2024-12-03 18:37:49,071][energy_star][INFO] - + Preparing backend for Inference
27
+ [PROC-0][2024-12-03 18:37:49,071][energy_star][INFO] - + Initialising dataloader
28
+ [PROC-0][2024-12-03 18:37:49,071][energy_star][INFO] - + Warming up backend for Inference
29
+ [PROC-0][2024-12-03 18:37:49,485][energy_star][INFO] - + Running Inference energy tracking for 10 iterations
30
+ [PROC-0][2024-12-03 18:37:49,485][energy_star][INFO] - + Iteration 1/10
31
+ [PROC-0][2024-12-03 18:38:17,241][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
32
+ [PROC-0][2024-12-03 18:38:17,241][energy_star][INFO] - + Iteration 2/10
33
+ [PROC-0][2024-12-03 18:38:44,651][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
34
+ [PROC-0][2024-12-03 18:38:44,651][energy_star][INFO] - + Iteration 3/10
35
+ [PROC-0][2024-12-03 18:39:12,942][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
36
+ [PROC-0][2024-12-03 18:39:12,943][energy_star][INFO] - + Iteration 4/10
37
+ [PROC-0][2024-12-03 18:39:40,465][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
38
+ [PROC-0][2024-12-03 18:39:40,515][energy_star][INFO] - + Iteration 5/10
39
+ [PROC-0][2024-12-03 18:40:07,845][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
40
+ [PROC-0][2024-12-03 18:40:07,845][energy_star][INFO] - + Iteration 6/10
41
+ [PROC-0][2024-12-03 18:40:35,640][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
42
+ [PROC-0][2024-12-03 18:40:35,640][energy_star][INFO] - + Iteration 7/10
43
+ [PROC-0][2024-12-03 18:41:03,340][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
44
+ [PROC-0][2024-12-03 18:41:03,341][energy_star][INFO] - + Iteration 8/10
45
+ [PROC-0][2024-12-03 18:41:31,024][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
46
+ [PROC-0][2024-12-03 18:41:31,025][energy_star][INFO] - + Iteration 9/10
47
+ [PROC-0][2024-12-03 18:41:58,542][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
48
+ [PROC-0][2024-12-03 18:41:58,543][energy_star][INFO] - + Iteration 10/10
49
+ [PROC-0][2024-12-03 18:42:25,661][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
50
+ [PROC-0][2024-12-03 18:42:25,662][energy][INFO] - + forward energy consumption:
51
+ [PROC-0][2024-12-03 18:42:25,662][energy][INFO] - + CPU: 0.000293 (kWh)
52
+ [PROC-0][2024-12-03 18:42:25,662][energy][INFO] - + GPU: 0.000515 (kWh)
53
+ [PROC-0][2024-12-03 18:42:25,662][energy][INFO] - + RAM: 0.000004 (kWh)
54
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + total: 0.000813 (kWh)
55
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + forward_iteration_1 energy consumption:
56
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + CPU: 0.000328 (kWh)
57
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + GPU: 0.000585 (kWh)
58
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + RAM: 0.000005 (kWh)
59
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + total: 0.000917 (kWh)
60
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + forward_iteration_2 energy consumption:
61
+ [PROC-0][2024-12-03 18:42:25,663][energy][INFO] - + CPU: 0.000324 (kWh)
62
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + GPU: 0.000570 (kWh)
63
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + RAM: 0.000005 (kWh)
64
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + total: 0.000898 (kWh)
65
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + forward_iteration_3 energy consumption:
66
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + CPU: 0.000334 (kWh)
67
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + GPU: 0.000584 (kWh)
68
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + RAM: 0.000005 (kWh)
69
+ [PROC-0][2024-12-03 18:42:25,664][energy][INFO] - + total: 0.000922 (kWh)
70
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + forward_iteration_4 energy consumption:
71
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + CPU: 0.000325 (kWh)
72
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + GPU: 0.000569 (kWh)
73
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + RAM: 0.000005 (kWh)
74
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + total: 0.000898 (kWh)
75
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + forward_iteration_5 energy consumption:
76
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + CPU: 0.000323 (kWh)
77
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + GPU: 0.000567 (kWh)
78
+ [PROC-0][2024-12-03 18:42:25,665][energy][INFO] - + RAM: 0.000005 (kWh)
79
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + total: 0.000894 (kWh)
80
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + forward_iteration_6 energy consumption:
81
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + CPU: 0.000328 (kWh)
82
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + GPU: 0.000572 (kWh)
83
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + RAM: 0.000005 (kWh)
84
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + total: 0.000905 (kWh)
85
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + forward_iteration_7 energy consumption:
86
+ [PROC-0][2024-12-03 18:42:25,666][energy][INFO] - + CPU: 0.000000 (kWh)
87
+ [PROC-0][2024-12-03 18:42:25,667][energy][INFO] - + GPU: 0.000000 (kWh)
88
+ [PROC-0][2024-12-03 18:42:25,667][energy][INFO] - + RAM: 0.000000 (kWh)
89
+ [PROC-0][2024-12-03 18:42:25,715][energy][INFO] - + total: 0.000000 (kWh)
90
+ [PROC-0][2024-12-03 18:42:25,715][energy][INFO] - + forward_iteration_8 energy consumption:
91
+ [PROC-0][2024-12-03 18:42:25,715][energy][INFO] - + CPU: 0.000327 (kWh)
92
+ [PROC-0][2024-12-03 18:42:25,715][energy][INFO] - + GPU: 0.000573 (kWh)
93
+ [PROC-0][2024-12-03 18:42:25,715][energy][INFO] - + RAM: 0.000005 (kWh)
94
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + total: 0.000904 (kWh)
95
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + forward_iteration_9 energy consumption:
96
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + CPU: 0.000325 (kWh)
97
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + GPU: 0.000571 (kWh)
98
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + RAM: 0.000005 (kWh)
99
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + total: 0.000900 (kWh)
100
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + forward_iteration_10 energy consumption:
101
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + CPU: 0.000320 (kWh)
102
+ [PROC-0][2024-12-03 18:42:25,716][energy][INFO] - + GPU: 0.000562 (kWh)
103
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + RAM: 0.000004 (kWh)
104
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + total: 0.000887 (kWh)
105
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + preprocess energy consumption:
106
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + CPU: 0.000097 (kWh)
107
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + GPU: 0.000162 (kWh)
108
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + RAM: 0.000001 (kWh)
109
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + total: 0.000259 (kWh)
110
+ [PROC-0][2024-12-03 18:42:25,717][energy][INFO] - + forward energy efficiency: 1230531.648862 (samples/kWh)
111
+ [PROC-0][2024-12-03 18:42:25,718][energy][INFO] - + preprocess energy efficiency: 3856030.446142 (samples/kWh)
112
+ [2024-12-03 18:42:26,402][device-isolation][INFO] - + Closing device(s) isolation process...
113
+ [2024-12-03 18:42:26,450][datasets][INFO] - PyTorch version 2.4.0 available.
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/error.log ADDED
The diff for this file is too large to render. See raw diff
 
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "image_classification",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "image-classification",
8
+ "model": "microsoft/resnet-50",
9
+ "processor": "microsoft/resnet-50",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/image_classification",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/forward_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T18:42:25",
3
+ "project_name": "codecarbon",
4
+ "run_id": "b94ac2e8-596e-42b1-8c9e-6543860f8a8e",
5
+ "duration": -1732037983.2031128,
6
+ "emissions": 0.0003273944172094787,
7
+ "emissions_rate": 1.2075583486384001e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 74.66230499324061,
10
+ "ram_power": 0.5942530632019043,
11
+ "cpu_energy": 0.0003201444721040187,
12
+ "gpu_energy": 0.0005623048942844378,
13
+ "ram_energy": 4.475387356327922e-06,
14
+ "energy_consumed": 0.0008869247537447843,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
image_classification/microsoft/resnet-50/2024-12-03-18-37-27/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T18:37:49",
3
+ "project_name": "codecarbon",
4
+ "run_id": "b94ac2e8-596e-42b1-8c9e-6543860f8a8e",
5
+ "duration": -1732038002.112201,
6
+ "emissions": 9.572911392857376e-05,
7
+ "emissions_rate": 1.1669907748273914e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 70.95781832217409,
10
+ "ram_power": 0.3441739082336426,
11
+ "cpu_energy": 9.686615021411045e-05,
12
+ "gpu_energy": 0.00016168374046188205,
13
+ "ram_energy": 7.841612635117118e-07,
14
+ "energy_consumed": 0.00025933405193950425,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: sentence-similarity
6
+ model: sentence-transformers/all-MiniLM-L6-v2
7
+ processor: sentence-transformers/all-MiniLM-L6-v2
8
+ library: transformers
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/sentence_similarity
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: sentence_similarity_udever-bloom-7b1
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=sentence-transformers/all-MiniLM-L6-v2
125
+ - backend.processor=sentence-transformers/all-MiniLM-L6-v2
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=sentence-transformers/all-MiniLM-L6-v2,backend.processor=sentence-transformers/all-MiniLM-L6-v2
130
+ id: ???
131
+ num: ???
132
+ config_name: sentence_similarity
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=sentence-transformers/all-MiniLM-L6-v2
2
+ - backend.processor=sentence-transformers/all-MiniLM-L6-v2
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/benchmark_report.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "forward": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 3.393861545311262e-05,
9
+ "ram": 2.718481024617733e-07,
10
+ "gpu": 6.395060671593455e-05,
11
+ "total": 9.816107027150896e-05
12
+ },
13
+ "efficiency": {
14
+ "unit": "samples/kWh",
15
+ "value": 10187337.986780772
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 3.8405788306004575e-05,
21
+ "ram": 3.076631009059927e-07,
22
+ "gpu": 7.123311254275677e-05,
23
+ "total": 0.00010994656394966734
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 3.6397076239841735e-05,
28
+ "ram": 2.9164412731504567e-07,
29
+ "gpu": 6.9703666873977e-05,
30
+ "total": 0.00010639238724113379
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 3.7922978214272816e-05,
35
+ "ram": 3.03511827501648e-07,
36
+ "gpu": 7.148977941540124e-05,
37
+ "total": 0.00010971626945717569
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 3.7989580341672984e-05,
42
+ "ram": 3.041148347834053e-07,
43
+ "gpu": 7.140505712399658e-05,
44
+ "total": 0.00010969875230045298
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 3.775637879007264e-05,
49
+ "ram": 3.0256728160521973e-07,
50
+ "gpu": 7.146977939598287e-05,
51
+ "total": 0.00010952872546766073
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 3.7847252587865424e-05,
56
+ "ram": 3.0330366035240876e-07,
57
+ "gpu": 7.157394614765167e-05,
58
+ "total": 0.00010972450239586954
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 3.812064859375823e-05,
70
+ "ram": 3.051872240094265e-07,
71
+ "gpu": 7.154839057221807e-05,
72
+ "total": 0.00010997422638998574
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 3.8328351003939255e-05,
77
+ "ram": 3.0716455280832476e-07,
78
+ "gpu": 7.138366821735076e-05,
79
+ "total": 0.0001100191837740983
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 3.661810045369851e-05,
84
+ "ram": 2.9332441533626145e-07,
85
+ "gpu": 6.969866687001058e-05,
86
+ "total": 0.00010661009173904543
87
+ }
88
+ ]
89
+ },
90
+ "preprocess": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 1.9352999284617707e-06,
97
+ "ram": 1.1865474745674232e-08,
98
+ "gpu": 3.745836330892871e-06,
99
+ "total": 5.693001734100316e-06
100
+ },
101
+ "efficiency": {
102
+ "unit": "samples/kWh",
103
+ "value": 175654258.8086939
104
+ },
105
+ "measures": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/cli.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-03 17:27:30,067][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-03 17:27:30,067][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-03 17:27:30,079][device-isolation][INFO] - + Launched device(s) isolation process 452
4
+ [2024-12-03 17:27:30,080][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-12-03 17:27:30,086][process][INFO] - + Launched benchmark in isolated process 453.
6
+ [PROC-0][2024-12-03 17:27:32,819][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-12-03 17:27:33,783][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-12-03 17:27:33,783][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-12-03 17:27:35,506][pytorch][INFO] - + Using AutoModel class AutoModel
10
+ [PROC-0][2024-12-03 17:27:35,506][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-12-03 17:27:35,506][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-12-03 17:27:35,507][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-12-03 17:27:35,507][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-12-03 17:27:35,507][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-12-03 17:27:35,509][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-12-03 17:27:35,509][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-12-03 17:27:35,510][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-12-03 17:27:35,510][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-12-03 17:27:35,808][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-12-03 17:27:35,814][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-12-03 17:27:35,814][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-12-03 17:27:36,606][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-12-03 17:27:36,607][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-12-03 17:27:40,793][energy_star][INFO] - + Preprocessing dataset
25
+ [PROC-0][2024-12-03 17:27:40,958][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
26
+ [PROC-0][2024-12-03 17:27:40,959][energy_star][INFO] - + Preparing backend for Inference
27
+ [PROC-0][2024-12-03 17:27:40,959][energy_star][INFO] - + Initialising dataloader
28
+ [PROC-0][2024-12-03 17:27:40,959][energy_star][INFO] - + Warming up backend for Inference
29
+ [PROC-0][2024-12-03 17:27:41,669][energy_star][INFO] - + Running Inference energy tracking for 10 iterations
30
+ [PROC-0][2024-12-03 17:27:41,669][energy_star][INFO] - + Iteration 1/10
31
+ [PROC-0][2024-12-03 17:27:44,923][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
32
+ [PROC-0][2024-12-03 17:27:44,924][energy_star][INFO] - + Iteration 2/10
33
+ [PROC-0][2024-12-03 17:27:48,007][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
34
+ [PROC-0][2024-12-03 17:27:48,008][energy_star][INFO] - + Iteration 3/10
35
+ [PROC-0][2024-12-03 17:27:51,221][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
36
+ [PROC-0][2024-12-03 17:27:51,221][energy_star][INFO] - + Iteration 4/10
37
+ [PROC-0][2024-12-03 17:27:54,440][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
38
+ [PROC-0][2024-12-03 17:27:54,440][energy_star][INFO] - + Iteration 5/10
39
+ [PROC-0][2024-12-03 17:27:57,639][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
40
+ [PROC-0][2024-12-03 17:27:57,639][energy_star][INFO] - + Iteration 6/10
41
+ [PROC-0][2024-12-03 17:28:00,846][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
42
+ [PROC-0][2024-12-03 17:28:00,846][energy_star][INFO] - + Iteration 7/10
43
+ [PROC-0][2024-12-03 17:28:04,066][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
44
+ [PROC-0][2024-12-03 17:28:04,066][energy_star][INFO] - + Iteration 8/10
45
+ [PROC-0][2024-12-03 17:28:07,296][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
46
+ [PROC-0][2024-12-03 17:28:07,296][energy_star][INFO] - + Iteration 9/10
47
+ [PROC-0][2024-12-03 17:28:10,543][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
48
+ [PROC-0][2024-12-03 17:28:10,544][energy_star][INFO] - + Iteration 10/10
49
+ [PROC-0][2024-12-03 17:28:13,646][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
50
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + forward energy consumption:
51
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + CPU: 0.000034 (kWh)
52
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + GPU: 0.000064 (kWh)
53
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + RAM: 0.000000 (kWh)
54
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + total: 0.000098 (kWh)
55
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + forward_iteration_1 energy consumption:
56
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + CPU: 0.000038 (kWh)
57
+ [PROC-0][2024-12-03 17:28:13,647][energy][INFO] - + GPU: 0.000071 (kWh)
58
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + RAM: 0.000000 (kWh)
59
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + total: 0.000110 (kWh)
60
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + forward_iteration_2 energy consumption:
61
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + CPU: 0.000036 (kWh)
62
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + GPU: 0.000070 (kWh)
63
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + RAM: 0.000000 (kWh)
64
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + total: 0.000106 (kWh)
65
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + forward_iteration_3 energy consumption:
66
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + CPU: 0.000038 (kWh)
67
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + GPU: 0.000071 (kWh)
68
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + RAM: 0.000000 (kWh)
69
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + total: 0.000110 (kWh)
70
+ [PROC-0][2024-12-03 17:28:13,648][energy][INFO] - + forward_iteration_4 energy consumption:
71
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + CPU: 0.000038 (kWh)
72
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + GPU: 0.000071 (kWh)
73
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + RAM: 0.000000 (kWh)
74
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + total: 0.000110 (kWh)
75
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + forward_iteration_5 energy consumption:
76
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + CPU: 0.000038 (kWh)
77
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + GPU: 0.000071 (kWh)
78
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + RAM: 0.000000 (kWh)
79
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + total: 0.000110 (kWh)
80
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + forward_iteration_6 energy consumption:
81
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + CPU: 0.000038 (kWh)
82
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + GPU: 0.000072 (kWh)
83
+ [PROC-0][2024-12-03 17:28:13,649][energy][INFO] - + RAM: 0.000000 (kWh)
84
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + total: 0.000110 (kWh)
85
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + forward_iteration_7 energy consumption:
86
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + CPU: 0.000000 (kWh)
87
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + GPU: 0.000000 (kWh)
88
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + RAM: 0.000000 (kWh)
89
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + total: 0.000000 (kWh)
90
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + forward_iteration_8 energy consumption:
91
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + CPU: 0.000038 (kWh)
92
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + GPU: 0.000072 (kWh)
93
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + RAM: 0.000000 (kWh)
94
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + total: 0.000110 (kWh)
95
+ [PROC-0][2024-12-03 17:28:13,650][energy][INFO] - + forward_iteration_9 energy consumption:
96
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + CPU: 0.000038 (kWh)
97
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + GPU: 0.000071 (kWh)
98
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + RAM: 0.000000 (kWh)
99
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + total: 0.000110 (kWh)
100
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + forward_iteration_10 energy consumption:
101
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + CPU: 0.000037 (kWh)
102
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + GPU: 0.000070 (kWh)
103
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + RAM: 0.000000 (kWh)
104
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + total: 0.000107 (kWh)
105
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + preprocess energy consumption:
106
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + CPU: 0.000002 (kWh)
107
+ [PROC-0][2024-12-03 17:28:13,651][energy][INFO] - + GPU: 0.000004 (kWh)
108
+ [PROC-0][2024-12-03 17:28:13,652][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-03 17:28:13,652][energy][INFO] - + total: 0.000006 (kWh)
110
+ [PROC-0][2024-12-03 17:28:13,652][energy][INFO] - + forward energy efficiency: 10187337.986781 (samples/kWh)
111
+ [PROC-0][2024-12-03 17:28:13,652][energy][INFO] - + preprocess energy efficiency: 175654258.808694 (samples/kWh)
112
+ [2024-12-03 17:28:14,309][device-isolation][INFO] - + Closing device(s) isolation process...
113
+ [2024-12-03 17:28:14,356][datasets][INFO] - PyTorch version 2.4.0 available.
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/error.log ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/1000 [00:00<?, ?it/s]
1
  3%|▎ | 31/1000 [00:00<00:03, 302.05it/s]
2
  6%|▌ | 62/1000 [00:00<00:03, 304.87it/s]
3
  9%|▉ | 94/1000 [00:00<00:02, 308.00it/s]
4
  12%|█▎ | 125/1000 [00:00<00:02, 307.50it/s]
5
  16%|█▌ | 156/1000 [00:00<00:02, 308.18it/s]
6
  19%|█▉ | 188/1000 [00:00<00:02, 309.59it/s]
7
  22%|██▏ | 219/1000 [00:00<00:02, 309.28it/s]
8
  25%|██▌ | 250/1000 [00:00<00:02, 307.71it/s]
9
  28%|██▊ | 281/1000 [00:00<00:02, 308.28it/s]
10
  31%|███ | 312/1000 [00:01<00:02, 308.48it/s]
11
  34%|███▍ | 344/1000 [00:01<00:02, 309.10it/s]
12
  38%|███▊ | 376/1000 [00:01<00:02, 309.46it/s]
13
  41%|████ | 408/1000 [00:01<00:01, 309.97it/s]
14
  44%|████▍ | 439/1000 [00:01<00:01, 307.63it/s]
15
  47%|████▋ | 470/1000 [00:01<00:01, 305.45it/s]
16
  50%|█████ | 501/1000 [00:01<00:01, 305.03it/s]
17
  53%|█████▎ | 532/1000 [00:01<00:01, 305.09it/s]
18
  56%|█████▋ | 563/1000 [00:01<00:01, 304.88it/s]
19
  59%|█████▉ | 594/1000 [00:01<00:01, 304.67it/s]
20
  62%|██████▎ | 625/1000 [00:02<00:01, 304.05it/s]
21
  66%|██████▌ | 656/1000 [00:02<00:01, 303.32it/s]
22
  69%|██████▊ | 687/1000 [00:02<00:01, 303.11it/s]
23
  72%|███████▏ | 719/1000 [00:02<00:00, 306.09it/s]
24
  75%|███████▌ | 752/1000 [00:02<00:00, 310.97it/s]
25
  78%|███████▊ | 785/1000 [00:02<00:00, 314.33it/s]
26
  82%|████████▏ | 817/1000 [00:02<00:00, 313.89it/s]
27
  85%|████████▍ | 849/1000 [00:02<00:00, 313.03it/s]
28
  88%|████████▊ | 881/1000 [00:02<00:00, 311.13it/s]
29
  91%|█████████▏| 913/1000 [00:02<00:00, 310.17it/s]
30
  94%|█████████▍| 945/1000 [00:03<00:00, 309.37it/s]
31
  98%|█████████▊| 976/1000 [00:03<00:00, 307.96it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  0%| | 0/1000 [00:00<?, ?it/s]
33
  3%|▎ | 32/1000 [00:00<00:03, 311.41it/s]
34
  6%|▋ | 65/1000 [00:00<00:02, 317.79it/s]
35
  10%|▉ | 98/1000 [00:00<00:02, 320.81it/s]
36
  13%|█▎ | 131/1000 [00:00<00:02, 320.84it/s]
37
  16%|█▋ | 164/1000 [00:00<00:02, 319.06it/s]
38
  20%|█▉ | 197/1000 [00:00<00:02, 320.58it/s]
39
  23%|██▎ | 230/1000 [00:00<00:02, 321.35it/s]
40
  26%|██▋ | 263/1000 [00:00<00:02, 321.84it/s]
41
  30%|██▉ | 296/1000 [00:00<00:02, 323.66it/s]
42
  33%|███▎ | 330/1000 [00:01<00:02, 325.86it/s]
43
  36%|███▋ | 363/1000 [00:01<00:01, 326.95it/s]
44
  40%|███▉ | 397/1000 [00:01<00:01, 327.95it/s]
45
  43%|████▎ | 430/1000 [00:01<00:01, 328.18it/s]
46
  46%|████▋ | 463/1000 [00:01<00:01, 328.40it/s]
47
  50%|████▉ | 496/1000 [00:01<00:01, 328.49it/s]
48
  53%|█████▎ | 529/1000 [00:01<00:01, 328.81it/s]
49
  56%|█████▋ | 563/1000 [00:01<00:01, 329.26it/s]
50
  60%|█████▉ | 597/1000 [00:01<00:01, 329.62it/s]
51
  63%|██████▎ | 630/1000 [00:01<00:01, 329.48it/s]
52
  66%|██████▋ | 663/1000 [00:02<00:01, 328.66it/s]
53
  70%|██████▉ | 696/1000 [00:02<00:00, 328.62it/s]
54
  73%|███████▎ | 729/1000 [00:02<00:00, 328.38it/s]
55
  76%|███████▌ | 762/1000 [00:02<00:00, 326.65it/s]
56
  80%|███████▉ | 795/1000 [00:02<00:00, 323.41it/s]
57
  83%|████████▎ | 828/1000 [00:02<00:00, 320.83it/s]
58
  86%|████████▌ | 861/1000 [00:02<00:00, 321.40it/s]
59
  89%|████████▉ | 894/1000 [00:02<00:00, 322.62it/s]
60
  93%|█████████▎| 927/1000 [00:02<00:00, 323.36it/s]
61
  96%|█████████▌| 960/1000 [00:02<00:00, 324.17it/s]
62
  99%|█████████▉| 993/1000 [00:03<00:00, 324.60it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  0%| | 0/1000 [00:00<?, ?it/s]
64
  3%|▎ | 32/1000 [00:00<00:03, 311.07it/s]
65
  6%|▋ | 64/1000 [00:00<00:03, 311.06it/s]
66
  10%|▉ | 97/1000 [00:00<00:02, 316.81it/s]
67
  13%|█▎ | 129/1000 [00:00<00:02, 317.07it/s]
68
  16%|█▌ | 161/1000 [00:00<00:02, 315.20it/s]
69
  19%|█▉ | 193/1000 [00:00<00:02, 313.51it/s]
70
  22%|██▎ | 225/1000 [00:00<00:02, 315.09it/s]
71
  26%|██▌ | 257/1000 [00:00<00:02, 315.17it/s]
72
  29%|██▉ | 289/1000 [00:00<00:02, 314.58it/s]
73
  32%|███▏ | 321/1000 [00:01<00:02, 313.05it/s]
74
  35%|███▌ | 353/1000 [00:01<00:02, 310.95it/s]
75
  38%|███▊ | 385/1000 [00:01<00:01, 311.14it/s]
76
  42%|████▏ | 417/1000 [00:01<00:01, 310.31it/s]
77
  45%|████▍ | 449/1000 [00:01<00:01, 310.19it/s]
78
  48%|████▊ | 481/1000 [00:01<00:01, 310.66it/s]
79
  51%|█████▏ | 513/1000 [00:01<00:01, 311.23it/s]
80
  55%|█████▍ | 545/1000 [00:01<00:01, 310.88it/s]
81
  58%|█████▊ | 577/1000 [00:01<00:01, 311.15it/s]
82
  61%|██████ | 609/1000 [00:01<00:01, 311.48it/s]
83
  64%|██████▍ | 641/1000 [00:02<00:01, 311.87it/s]
84
  67%|██████▋ | 673/1000 [00:02<00:01, 312.84it/s]
85
  70%|███████ | 705/1000 [00:02<00:00, 312.49it/s]
86
  74%|███████▎ | 737/1000 [00:02<00:00, 312.56it/s]
87
  77%|███████▋ | 769/1000 [00:02<00:00, 312.43it/s]
88
  80%|████████ | 801/1000 [00:02<00:00, 310.91it/s]
89
  83%|████████▎ | 833/1000 [00:02<00:00, 311.25it/s]
90
  86%|████████▋ | 865/1000 [00:02<00:00, 311.15it/s]
91
  90%|████████▉ | 897/1000 [00:02<00:00, 311.70it/s]
92
  93%|█████████▎| 929/1000 [00:02<00:00, 311.78it/s]
93
  96%|█████████▌| 961/1000 [00:03<00:00, 312.29it/s]
94
  99%|█████████▉| 993/1000 [00:03<00:00, 311.96it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  0%| | 0/1000 [00:00<?, ?it/s]
96
  3%|▎ | 32/1000 [00:00<00:03, 315.14it/s]
97
  6%|▋ | 64/1000 [00:00<00:02, 312.54it/s]
98
  10%|▉ | 96/1000 [00:00<00:02, 310.37it/s]
99
  13%|█▎ | 128/1000 [00:00<00:02, 310.66it/s]
100
  16%|█▌ | 161/1000 [00:00<00:02, 315.74it/s]
101
  19%|█▉ | 193/1000 [00:00<00:02, 315.35it/s]
102
  23%|██▎ | 226/1000 [00:00<00:02, 317.73it/s]
103
  26%|██▌ | 258/1000 [00:00<00:02, 317.67it/s]
104
  29%|██▉ | 290/1000 [00:00<00:02, 316.20it/s]
105
  32%|███▏ | 322/1000 [00:01<00:02, 315.07it/s]
106
  35%|███▌ | 354/1000 [00:01<00:02, 314.04it/s]
107
  39%|███▊ | 386/1000 [00:01<00:01, 312.44it/s]
108
  42%|████▏ | 418/1000 [00:01<00:01, 313.22it/s]
109
  45%|████▌ | 450/1000 [00:01<00:01, 312.61it/s]
110
  48%|████▊ | 482/1000 [00:01<00:01, 311.25it/s]
111
  51%|█████▏ | 514/1000 [00:01<00:01, 310.90it/s]
112
  55%|█████▍ | 546/1000 [00:01<00:01, 310.64it/s]
113
  58%|█████▊ | 578/1000 [00:01<00:01, 309.98it/s]
114
  61%|██████ | 609/1000 [00:01<00:01, 309.89it/s]
115
  64%|██████▍ | 640/1000 [00:02<00:01, 309.78it/s]
116
  67%|██████▋ | 672/1000 [00:02<00:01, 310.19it/s]
117
  70%|███████ | 704/1000 [00:02<00:00, 309.38it/s]
118
  74%|███████▎ | 735/1000 [00:02<00:00, 308.37it/s]
119
  77%|███████▋ | 767/1000 [00:02<00:00, 309.41it/s]
120
  80%|███████▉ | 798/1000 [00:02<00:00, 309.30it/s]
121
  83%|████████▎ | 830/1000 [00:02<00:00, 310.13it/s]
122
  86%|████████▌ | 862/1000 [00:02<00:00, 310.46it/s]
123
  89%|████████▉ | 894/1000 [00:02<00:00, 310.45it/s]
124
  93%|█████████▎| 926/1000 [00:02<00:00, 309.71it/s]
125
  96%|█████████▌| 958/1000 [00:03<00:00, 309.98it/s]
126
  99%|█████████▉| 990/1000 [00:03<00:00, 310.16it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  0%| | 0/1000 [00:00<?, ?it/s]
128
  3%|▎ | 33/1000 [00:00<00:02, 324.59it/s]
129
  7%|▋ | 66/1000 [00:00<00:02, 326.01it/s]
130
  10%|▉ | 99/1000 [00:00<00:02, 321.97it/s]
131
  13%|█▎ | 132/1000 [00:00<00:02, 316.99it/s]
132
  16%|█▋ | 164/1000 [00:00<00:02, 313.99it/s]
133
  20%|█▉ | 196/1000 [00:00<00:02, 313.96it/s]
134
  23%|██▎ | 228/1000 [00:00<00:02, 313.02it/s]
135
  26%|██▌ | 260/1000 [00:00<00:02, 312.28it/s]
136
  29%|██▉ | 292/1000 [00:00<00:02, 311.94it/s]
137
  32%|███▏ | 324/1000 [00:01<00:02, 311.88it/s]
138
  36%|███▌ | 356/1000 [00:01<00:02, 312.14it/s]
139
  39%|███▉ | 388/1000 [00:01<00:01, 311.78it/s]
140
  42%|████▏ | 420/1000 [00:01<00:01, 311.61it/s]
141
  45%|███���▌ | 452/1000 [00:01<00:01, 311.19it/s]
142
  48%|████▊ | 484/1000 [00:01<00:01, 310.47it/s]
143
  52%|█████▏ | 516/1000 [00:01<00:01, 309.75it/s]
144
  55%|█████▍ | 547/1000 [00:01<00:01, 309.75it/s]
145
  58%|█████▊ | 579/1000 [00:01<00:01, 309.94it/s]
146
  61%|██████ | 611/1000 [00:01<00:01, 311.17it/s]
147
  64%|██████▍ | 644/1000 [00:02<00:01, 314.36it/s]
148
  68%|██████▊ | 676/1000 [00:02<00:01, 313.77it/s]
149
  71%|███████ | 708/1000 [00:02<00:00, 314.04it/s]
150
  74%|███████▍ | 740/1000 [00:02<00:00, 313.31it/s]
151
  77%|███████▋ | 772/1000 [00:02<00:00, 312.91it/s]
152
  80%|████████ | 804/1000 [00:02<00:00, 312.55it/s]
153
  84%|████████▎ | 836/1000 [00:02<00:00, 312.58it/s]
154
  87%|████████▋ | 868/1000 [00:02<00:00, 312.68it/s]
155
  90%|█████████ | 900/1000 [00:02<00:00, 313.58it/s]
156
  93%|█████████▎| 932/1000 [00:02<00:00, 313.64it/s]
157
  96%|█████████▋| 964/1000 [00:03<00:00, 314.54it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  0%| | 0/1000 [00:00<?, ?it/s]
159
  3%|▎ | 33/1000 [00:00<00:02, 323.46it/s]
160
  7%|▋ | 66/1000 [00:00<00:02, 324.12it/s]
161
  10%|▉ | 99/1000 [00:00<00:02, 324.43it/s]
162
  13%|█▎ | 132/1000 [00:00<00:02, 324.96it/s]
163
  16%|█▋ | 165/1000 [00:00<00:02, 320.74it/s]
164
  20%|█▉ | 198/1000 [00:00<00:02, 317.59it/s]
165
  23%|██▎ | 230/1000 [00:00<00:02, 316.48it/s]
166
  26%|██▌ | 262/1000 [00:00<00:02, 313.69it/s]
167
  29%|██▉ | 294/1000 [00:00<00:02, 311.48it/s]
168
  33%|███▎ | 326/1000 [00:01<00:02, 311.48it/s]
169
  36%|███▌ | 358/1000 [00:01<00:02, 311.54it/s]
170
  39%|███▉ | 390/1000 [00:01<00:01, 310.29it/s]
171
  42%|████▏ | 422/1000 [00:01<00:01, 309.85it/s]
172
  45%|████▌ | 453/1000 [00:01<00:01, 309.84it/s]
173
  48%|████▊ | 484/1000 [00:01<00:01, 309.68it/s]
174
  52%|█████▏ | 516/1000 [00:01<00:01, 309.93it/s]
175
  55%|█████▍ | 548/1000 [00:01<00:01, 312.44it/s]
176
  58%|█████▊ | 581/1000 [00:01<00:01, 315.92it/s]
177
  61%|██████▏ | 614/1000 [00:01<00:01, 318.29it/s]
178
  65%|█████���▍ | 646/1000 [00:02<00:01, 317.50it/s]
179
  68%|██████▊ | 678/1000 [00:02<00:01, 314.48it/s]
180
  71%|███████ | 710/1000 [00:02<00:00, 313.08it/s]
181
  74%|███████▍ | 742/1000 [00:02<00:00, 312.59it/s]
182
  77%|███████▋ | 774/1000 [00:02<00:00, 312.00it/s]
183
  81%|████████ | 806/1000 [00:02<00:00, 311.11it/s]
184
  84%|████████▍ | 838/1000 [00:02<00:00, 308.79it/s]
185
  87%|████████▋ | 869/1000 [00:02<00:00, 308.61it/s]
186
  90%|█████████ | 900/1000 [00:02<00:00, 307.95it/s]
187
  93%|█████████▎| 931/1000 [00:02<00:00, 307.51it/s]
188
  96%|█████████▌| 962/1000 [00:03<00:00, 307.39it/s]
189
  99%|█████████▉| 993/1000 [00:03<00:00, 307.06it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
190
  0%| | 0/1000 [00:00<?, ?it/s]
191
  3%|▎ | 33/1000 [00:00<00:02, 322.86it/s]
192
  7%|▋ | 66/1000 [00:00<00:02, 323.01it/s]
193
  10%|▉ | 99/1000 [00:00<00:02, 316.72it/s]
194
  13%|█▎ | 131/1000 [00:00<00:02, 314.15it/s]
195
  16%|█▋ | 163/1000 [00:00<00:02, 311.28it/s]
196
  20%|█▉ | 195/1000 [00:00<00:02, 307.82it/s]
197
  23%|██▎ | 227/1000 [00:00<00:02, 308.79it/s]
198
  26%|██▌ | 258/1000 [00:00<00:02, 308.84it/s]
199
  29%|██▉ | 290/1000 [00:00<00:02, 309.47it/s]
200
  32%|███▏ | 322/1000 [00:01<00:02, 309.80it/s]
201
  35%|███▌ | 354/1000 [00:01<00:02, 311.02it/s]
202
  39%|███▊ | 386/1000 [00:01<00:01, 311.75it/s]
203
  42%|████▏ | 418/1000 [00:01<00:01, 312.02it/s]
204
  45%|████▌ | 450/1000 [00:01<00:01, 310.78it/s]
205
  48%|████▊ | 482/1000 [00:01<00:01, 311.58it/s]
206
  51%|█████▏ | 514/1000 [00:01<00:01, 310.87it/s]
207
  55%|█████▍ | 546/1000 [00:01<00:01, 311.02it/s]
208
  58%|█████▊ | 578/1000 [00:01<00:01, 310.64it/s]
209
  61%|██████ | 610/1000 [00:01<00:01, 310.66it/s]
210
  64%|██████▍ | 642/1000 [00:02<00:01, 311.24it/s]
211
  67%|██████▋ | 674/1000 [00:02<00:01, 311.18it/s]
212
  71%|███████ | 706/1000 [00:02<00:00, 311.15it/s]
213
  74%|███████▍ | 738/1000 [00:02<00:00, 310.86it/s]
214
  77%|███████▋ | 770/1000 [00:02<00:00, 310.51it/s]
215
  80%|████████ | 802/1000 [00:02<00:00, 310.01it/s]
216
  83%|████████▎ | 834/1000 [00:02<00:00, 310.57it/s]
217
  87%|████████▋ | 866/1000 [00:02<00:00, 310.72it/s]
218
  90%|████████▉ | 898/1000 [00:02<00:00, 310.53it/s]
219
  93%|█████████▎| 930/1000 [00:02<00:00, 309.85it/s]
220
  96%|█████████▌| 962/1000 [00:03<00:00, 311.33it/s]
221
  99%|█████████▉| 994/1000 [00:03<00:00, 312.62it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
  0%| | 0/1000 [00:00<?, ?it/s]
223
  3%|▎ | 30/1000 [00:00<00:03, 296.80it/s]
224
  6%|▌ | 62/1000 [00:00<00:03, 306.17it/s]
225
  9%|▉ | 94/1000 [00:00<00:02, 309.08it/s]
226
  12%|█▎ | 125/1000 [00:00<00:02, 308.40it/s]
227
  16%|█▌ | 157/1000 [00:00<00:02, 309.83it/s]
228
  19%|█▉ | 189/1000 [00:00<00:02, 309.91it/s]
229
  22%|██▏ | 221/1000 [00:00<00:02, 310.34it/s]
230
  25%|██▌ | 253/1000 [00:00<00:02, 309.40it/s]
231
  28%|██▊ | 285/1000 [00:00<00:02, 309.61it/s]
232
  32%|███▏ | 316/1000 [00:01<00:02, 309.52it/s]
233
  35%|███▍ | 347/1000 [00:01<00:02, 309.20it/s]
234
  38%|███▊ | 378/1000 [00:01<00:02, 308.54it/s]
235
  41%|████ | 409/1000 [00:01<00:01, 307.17it/s]
236
  44%|████▍ | 440/1000 [00:01<00:01, 307.05it/s]
237
  47%|████▋ | 471/1000 [00:01<00:01, 307.68it/s]
238
  50%|█████ | 502/1000 [00:01<00:01, 308.07it/s]
239
  53%|█████▎ | 533/1000 [00:01<00:01, 308.47it/s]
240
  56%|█████▋ | 565/1000 [00:01<00:01, 308.94it/s]
241
  60%|█████▉ | 596/1000 [00:01<00:01, 308.43it/s]
242
  63%|██████▎ | 627/1000 [00:02<00:01, 308.66it/s]
243
  66%|██████▌ | 658/1000 [00:02<00:01, 308.69it/s]
244
  69%|██████▉ | 689/1000 [00:02<00:01, 307.93it/s]
245
  72%|███████▏ | 720/1000 [00:02<00:00, 308.49it/s]
246
  75%|███████▌ | 752/1000 [00:02<00:00, 309.91it/s]
247
  78%|███████▊ | 784/1000 [00:02<00:00, 310.83it/s]
248
  82%|████████▏ | 816/1000 [00:02<00:00, 311.94it/s]
249
  85%|████████▍ | 849/1000 [00:02<00:00, 315.26it/s]
250
  88%|████████▊ | 882/1000 [00:02<00:00, 317.95it/s]
251
  92%|█████████▏| 915/1000 [00:02<00:00, 319.69it/s]
252
  95%|█████████▍| 948/1000 [00:03<00:00, 319.72it/s]
253
  98%|█████████▊| 980/1000 [00:03<00:00, 314.51it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  0%| | 0/1000 [00:00<?, ?it/s]
255
  3%|▎ | 33/1000 [00:00<00:02, 325.26it/s]
256
  7%|▋ | 66/1000 [00:00<00:02, 325.74it/s]
257
  10%|▉ | 99/1000 [00:00<00:02, 325.98it/s]
258
  13%|█▎ | 132/1000 [00:00<00:02, 318.54it/s]
259
  16%|█▋ | 164/1000 [00:00<00:02, 314.42it/s]
260
  20%|█▉ | 196/1000 [00:00<00:02, 311.14it/s]
261
  23%|██▎ | 228/1000 [00:00<00:02, 305.68it/s]
262
  26%|██▌ | 259/1000 [00:00<00:02, 305.21it/s]
263
  29%|██▉ | 290/1000 [00:00<00:02, 304.95it/s]
264
  32%|███▏ | 321/1000 [00:01<00:02, 304.95it/s]
265
  35%|███▌ | 352/1000 [00:01<00:02, 305.51it/s]
266
  38%|███▊ | 383/1000 [00:01<00:02, 305.48it/s]
267
  41%|████▏ | 414/1000 [00:01<00:01, 304.74it/s]
268
  44%|████▍ | 445/1000 [00:01<00:01, 306.27it/s]
269
  48%|████▊ | 477/1000 [00:01<00:01, 307.59it/s]
270
  51%|█████ | 508/1000 [00:01<00:01, 306.71it/s]
271
  54%|█████▍ | 539/1000 [00:01<00:01, 306.13it/s]
272
  57%|█████▋ | 570/1000 [00:01<00:01, 305.34it/s]
273
  60%|██████ | 601/1000 [00:01<00:01, 305.54it/s]
274
  63%|██████▎ | 632/1000 [00:02<00:01, 305.66it/s]
275
  66%|██████▋ | 663/1000 [00:02<00:01, 306.23it/s]
276
  69%|██████▉ | 694/1000 [00:02<00:01, 305.99it/s]
277
  72%|██��████▎ | 725/1000 [00:02<00:00, 304.97it/s]
278
  76%|███████▌ | 756/1000 [00:02<00:00, 304.96it/s]
279
  79%|███████▉ | 789/1000 [00:02<00:00, 310.40it/s]
280
  82%|████████▏ | 822/1000 [00:02<00:00, 313.93it/s]
281
  86%|████████▌ | 855/1000 [00:02<00:00, 316.63it/s]
282
  89%|████████▊ | 887/1000 [00:02<00:00, 314.24it/s]
283
  92%|█████████▏| 919/1000 [00:02<00:00, 311.26it/s]
284
  95%|█████████▌| 951/1000 [00:03<00:00, 308.53it/s]
285
  98%|█████████▊| 982/1000 [00:03<00:00, 306.18it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
286
  0%| | 0/1000 [00:00<?, ?it/s]
287
  3%|▎ | 31/1000 [00:00<00:03, 301.38it/s]
288
  6%|▋ | 63/1000 [00:00<00:03, 307.34it/s]
289
  10%|▉ | 96/1000 [00:00<00:02, 313.37it/s]
290
  13%|█▎ | 129/1000 [00:00<00:02, 316.40it/s]
291
  16%|█▌ | 162/1000 [00:00<00:02, 319.83it/s]
292
  20%|█▉ | 195/1000 [00:00<00:02, 321.40it/s]
293
  23%|██▎ | 228/1000 [00:00<00:02, 321.65it/s]
294
  26%|██▌ | 261/1000 [00:00<00:02, 320.03it/s]
295
  29%|██▉ | 294/1000 [00:00<00:02, 321.64it/s]
296
  33%|███▎ | 327/1000 [00:01<00:02, 323.21it/s]
297
  36%|███▌ | 360/1000 [00:01<00:01, 323.70it/s]
298
  39%|███▉ | 393/1000 [00:01<00:01, 324.03it/s]
299
  43%|████▎ | 427/1000 [00:01<00:01, 325.87it/s]
300
  46%|████▌ | 460/1000 [00:01<00:01, 326.08it/s]
301
  49%|████▉ | 493/1000 [00:01<00:01, 325.62it/s]
302
  53%|█████▎ | 526/1000 [00:01<00:01, 325.88it/s]
303
  56%|█████▌ | 559/1000 [00:01<00:01, 325.86it/s]
304
  59%|█████▉ | 592/1000 [00:01<00:01, 326.28it/s]
305
  62%|██████▎ | 625/1000 [00:01<00:01, 326.71it/s]
306
  66%|██████▌ | 658/1000 [00:02<00:01, 325.83it/s]
307
  69%|██████▉ | 691/1000 [00:02<00:00, 325.76it/s]
308
  72%|███████▏ | 724/1000 [00:02<00:00, 325.52it/s]
309
  76%|███████▌ | 757/1000 [00:02<00:00, 325.40it/s]
310
  79%|███████▉ | 790/1000 [00:02<00:00, 325.81it/s]
311
  82%|████████▏ | 823/1000 [00:02<00:00, 324.75it/s]
312
  86%|████████▌ | 856/1000 [00:02<00:00, 325.22it/s]
313
  89%|████████▉ | 889/1000 [00:02<00:00, 324.63it/s]
314
  92%|█████████▏| 922/1000 [00:02<00:00, 323.30it/s]
315
  96%|█████████▌| 955/1000 [00:02<00:00, 323.36it/s]
316
  99%|█████████▉| 988/1000 [00:03<00:00, 322.75it/s]
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /opt/conda/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
2
+ warnings.warn(
3
+ [codecarbon INFO @ 17:27:36] [setup] RAM Tracking...
4
+ [codecarbon INFO @ 17:27:36] [setup] GPU Tracking...
5
+ [codecarbon INFO @ 17:27:36] Tracking Nvidia GPU via pynvml
6
+ [codecarbon DEBUG @ 17:27:36] GPU available. Starting setup
7
+ [codecarbon INFO @ 17:27:36] [setup] CPU Tracking...
8
+ [codecarbon DEBUG @ 17:27:36] Not using PowerGadget, an exception occurred while instantiating IntelPowerGadget : Platform not supported by Intel Power Gadget
9
+ [codecarbon DEBUG @ 17:27:36] Not using the RAPL interface, an exception occurred while instantiating IntelRAPL : Intel RAPL files not found at /sys/class/powercap/intel-rapl on linux
10
+ [codecarbon DEBUG @ 17:27:36] Not using PowerMetrics, an exception occurred while instantiating Powermetrics : Platform not supported by Powermetrics
11
+ [codecarbon WARNING @ 17:27:36] No CPU tracking mode found. Falling back on CPU constant mode.
12
+ [codecarbon WARNING @ 17:27:37] We saw that you have a AMD EPYC 7R32 but we don't know it. Please contact us.
13
+ [codecarbon INFO @ 17:27:37] CPU Model on constant consumption mode: AMD EPYC 7R32
14
+ [codecarbon INFO @ 17:27:37] >>> Tracker's metadata:
15
+ [codecarbon INFO @ 17:27:37] Platform system: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
16
+ [codecarbon INFO @ 17:27:37] Python version: 3.9.20
17
+ [codecarbon INFO @ 17:27:37] CodeCarbon version: 2.5.1
18
+ [codecarbon INFO @ 17:27:37] Available RAM : 186.705 GB
19
+ [codecarbon INFO @ 17:27:37] CPU count: 48
20
+ [codecarbon INFO @ 17:27:37] CPU model: AMD EPYC 7R32
21
+ [codecarbon INFO @ 17:27:37] GPU count: 1
22
+ [codecarbon INFO @ 17:27:37] GPU model: 1 x NVIDIA A10G
23
+ [codecarbon DEBUG @ 17:27:38] Not running on AWS
24
+ [codecarbon DEBUG @ 17:27:39] Not running on Azure
25
+ [codecarbon DEBUG @ 17:27:40] Not running on GCP
26
+ [codecarbon INFO @ 17:27:40] Saving emissions data to file /runs/sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/codecarbon.csv
27
+ [codecarbon DEBUG @ 17:27:40] EmissionsData(timestamp='2024-12-03T17:27:40', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.002136246068403125, emissions=0.0, emissions_rate=0.0, cpu_power=0.0, gpu_power=0.0, ram_power=0.0, cpu_energy=0, gpu_energy=0, ram_energy=0, energy_consumed=0, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
28
+
29
+ [codecarbon INFO @ 17:27:40] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.2655043601989746 W
30
+ [codecarbon DEBUG @ 17:27:40] RAM : 0.27 W during 0.16 s [measurement time: 0.0005]
31
+ [codecarbon INFO @ 17:27:40] Energy consumed for all GPUs : 0.000004 kWh. Total GPU Power : 83.40582264689574 W
32
+ [codecarbon DEBUG @ 17:27:40] GPU : 83.41 W during 0.16 s [measurement time: 0.0022]
33
+ [codecarbon INFO @ 17:27:40] Energy consumed for all CPUs : 0.000002 kWh. Total CPU Power : 42.5 W
34
+ [codecarbon DEBUG @ 17:27:40] CPU : 42.50 W during 0.16 s [measurement time: 0.0000]
35
+ [codecarbon INFO @ 17:27:40] 0.000006 kWh of electricity used since the beginning.
36
+ [codecarbon DEBUG @ 17:27:40] last_duration=0.16088268999010324
37
+ ------------------------
38
+ [codecarbon DEBUG @ 17:27:40] EmissionsData(timestamp='2024-12-03T17:27:40', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.16403498221188784, emissions=2.1014826534480243e-06, emissions_rate=1.2811185913584517e-05, cpu_power=42.5, gpu_power=83.40582264689574, ram_power=0.2655043601989746, cpu_energy=1.9352999284617707e-06, gpu_energy=3.745836330892871e-06, ram_energy=1.1865474745674232e-08, energy_consumed=5.693001734100316e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
39
+ [codecarbon DEBUG @ 17:27:41] EmissionsData(timestamp='2024-12-03T17:27:41', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.0022145879920572042, emissions=2.1014826534480243e-06, emissions_rate=0.0009489271417460759, cpu_power=42.5, gpu_power=83.40582264689574, ram_power=0.2655043601989746, cpu_energy=1.9352999284617707e-06, gpu_energy=3.745836330892871e-06, ram_energy=1.1865474745674232e-08, energy_consumed=5.693001734100316e-06, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
40
+
41
  0%| | 0/1000 [00:00<?, ?it/s]
42
  3%|▎ | 31/1000 [00:00<00:03, 302.05it/s]
43
  6%|▌ | 62/1000 [00:00<00:03, 304.87it/s]
44
  9%|▉ | 94/1000 [00:00<00:02, 308.00it/s]
45
  12%|█▎ | 125/1000 [00:00<00:02, 307.50it/s]
46
  16%|█▌ | 156/1000 [00:00<00:02, 308.18it/s]
47
  19%|█▉ | 188/1000 [00:00<00:02, 309.59it/s]
48
  22%|██▏ | 219/1000 [00:00<00:02, 309.28it/s]
49
  25%|██▌ | 250/1000 [00:00<00:02, 307.71it/s]
50
  28%|██▊ | 281/1000 [00:00<00:02, 308.28it/s]
51
  31%|███ | 312/1000 [00:01<00:02, 308.48it/s]
52
  34%|███▍ | 344/1000 [00:01<00:02, 309.10it/s]
53
  38%|███▊ | 376/1000 [00:01<00:02, 309.46it/s]
54
  41%|████ | 408/1000 [00:01<00:01, 309.97it/s]
55
  44%|████▍ | 439/1000 [00:01<00:01, 307.63it/s]
56
  47%|████▋ | 470/1000 [00:01<00:01, 305.45it/s]
57
  50%|█████ | 501/1000 [00:01<00:01, 305.03it/s]
58
  53%|█████▎ | 532/1000 [00:01<00:01, 305.09it/s]
59
  56%|█████▋ | 563/1000 [00:01<00:01, 304.88it/s]
60
  59%|█████▉ | 594/1000 [00:01<00:01, 304.67it/s]
61
  62%|██████▎ | 625/1000 [00:02<00:01, 304.05it/s]
62
  66%|██████▌ | 656/1000 [00:02<00:01, 303.32it/s]
63
  69%|██████▊ | 687/1000 [00:02<00:01, 303.11it/s]
64
  72%|███████▏ | 719/1000 [00:02<00:00, 306.09it/s]
65
  75%|███████▌ | 752/1000 [00:02<00:00, 310.97it/s]
66
  78%|███████▊ | 785/1000 [00:02<00:00, 314.33it/s]
67
  82%|████████▏ | 817/1000 [00:02<00:00, 313.89it/s]
68
  85%|████████▍ | 849/1000 [00:02<00:00, 313.03it/s]
69
  88%|████████▊ | 881/1000 [00:02<00:00, 311.13it/s]
70
  91%|█████████▏| 913/1000 [00:02<00:00, 310.17it/s]
71
  94%|█████████▍| 945/1000 [00:03<00:00, 309.37it/s]
72
  98%|█████████▊| 976/1000 [00:03<00:00, 307.96it/s]
73
+ [codecarbon WARNING @ 17:27:44] Background scheduler didn't run for a long period (3s), results might be inaccurate
74
+ [codecarbon INFO @ 17:27:44] Energy consumed for RAM : 0.000000 kWh. RAM Power : 0.34078216552734375 W
75
+ [codecarbon DEBUG @ 17:27:44] RAM : 0.34 W during 3.25 s [measurement time: 0.0005]
76
+ [codecarbon INFO @ 17:27:44] Energy consumed for all GPUs : 0.000075 kWh. Total GPU Power : 78.88328900630715 W
77
+ [codecarbon DEBUG @ 17:27:44] GPU : 78.88 W during 3.25 s [measurement time: 0.0023]
78
+ [codecarbon INFO @ 17:27:44] Energy consumed for all CPUs : 0.000040 kWh. Total CPU Power : 42.5 W
79
+ [codecarbon DEBUG @ 17:27:44] CPU : 42.50 W during 3.25 s [measurement time: 0.0000]
80
+ [codecarbon INFO @ 17:27:44] 0.000116 kWh of electricity used since the beginning.
81
+ [codecarbon DEBUG @ 17:27:44] last_duration=3.2499246599618345
82
+ ------------------------
83
+ [codecarbon DEBUG @ 17:27:44] EmissionsData(timestamp='2024-12-03T17:27:44', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.253297318937257, emissions=4.268653913823294e-05, emissions_rate=1.3121007689569916e-05, cpu_power=42.5, gpu_power=78.88328900630715, ram_power=0.34078216552734375, cpu_energy=4.034108823446635e-05, gpu_energy=7.497894887364964e-05, ram_energy=3.1952857565166694e-07, energy_consumed=0.00011563956568376766, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
84
+ [codecarbon DEBUG @ 17:27:44] EmissionsData(timestamp='2024-12-03T17:27:44', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.0020191711373627186, emissions=4.268653913823294e-05, emissions_rate=0.021140624659476224, cpu_power=42.5, gpu_power=78.88328900630715, ram_power=0.34078216552734375, cpu_energy=4.034108823446635e-05, gpu_energy=7.497894887364964e-05, ram_energy=3.1952857565166694e-07, energy_consumed=0.00011563956568376766, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
85
+
86
  0%| | 0/1000 [00:00<?, ?it/s]
87
  3%|▎ | 32/1000 [00:00<00:03, 311.41it/s]
88
  6%|▋ | 65/1000 [00:00<00:02, 317.79it/s]
89
  10%|▉ | 98/1000 [00:00<00:02, 320.81it/s]
90
  13%|█▎ | 131/1000 [00:00<00:02, 320.84it/s]
91
  16%|█▋ | 164/1000 [00:00<00:02, 319.06it/s]
92
  20%|█▉ | 197/1000 [00:00<00:02, 320.58it/s]
93
  23%|██▎ | 230/1000 [00:00<00:02, 321.35it/s]
94
  26%|██▋ | 263/1000 [00:00<00:02, 321.84it/s]
95
  30%|██▉ | 296/1000 [00:00<00:02, 323.66it/s]
96
  33%|███▎ | 330/1000 [00:01<00:02, 325.86it/s]
97
  36%|███▋ | 363/1000 [00:01<00:01, 326.95it/s]
98
  40%|███▉ | 397/1000 [00:01<00:01, 327.95it/s]
99
  43%|████▎ | 430/1000 [00:01<00:01, 328.18it/s]
100
  46%|████▋ | 463/1000 [00:01<00:01, 328.40it/s]
101
  50%|████▉ | 496/1000 [00:01<00:01, 328.49it/s]
102
  53%|█████▎ | 529/1000 [00:01<00:01, 328.81it/s]
103
  56%|█████▋ | 563/1000 [00:01<00:01, 329.26it/s]
104
  60%|█████▉ | 597/1000 [00:01<00:01, 329.62it/s]
105
  63%|██████▎ | 630/1000 [00:01<00:01, 329.48it/s]
106
  66%|██████▋ | 663/1000 [00:02<00:01, 328.66it/s]
107
  70%|██████▉ | 696/1000 [00:02<00:00, 328.62it/s]
108
  73%|███████▎ | 729/1000 [00:02<00:00, 328.38it/s]
109
  76%|███████▌ | 762/1000 [00:02<00:00, 326.65it/s]
110
  80%|███████▉ | 795/1000 [00:02<00:00, 323.41it/s]
111
  83%|████████▎ | 828/1000 [00:02<00:00, 320.83it/s]
112
  86%|████████▌ | 861/1000 [00:02<00:00, 321.40it/s]
113
  89%|████████▉ | 894/1000 [00:02<00:00, 322.62it/s]
114
  93%|█████████▎| 927/1000 [00:02<00:00, 323.36it/s]
115
  96%|█████████▌| 960/1000 [00:02<00:00, 324.17it/s]
116
  99%|█████████▉| 993/1000 [00:03<00:00, 324.60it/s]
117
+ [codecarbon WARNING @ 17:27:48] Background scheduler didn't run for a long period (3s), results might be inaccurate
118
+ [codecarbon INFO @ 17:27:48] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34087371826171875 W
119
+ [codecarbon DEBUG @ 17:27:48] RAM : 0.34 W during 3.08 s [measurement time: 0.0004]
120
+ [codecarbon INFO @ 17:27:48] Energy consumed for all GPUs : 0.000145 kWh. Total GPU Power : 81.45146171903654 W
121
+ [codecarbon DEBUG @ 17:27:48] GPU : 81.45 W during 3.08 s [measurement time: 0.0023]
122
+ [codecarbon INFO @ 17:27:48] Energy consumed for all CPUs : 0.000077 kWh. Total CPU Power : 42.5 W
123
+ [codecarbon DEBUG @ 17:27:48] CPU : 42.50 W during 3.08 s [measurement time: 0.0000]
124
+ [codecarbon INFO @ 17:27:48] 0.000222 kWh of electricity used since the beginning.
125
+ [codecarbon DEBUG @ 17:27:48] last_duration=3.0799942889716476
126
+ ------------------------
127
+ [codecarbon DEBUG @ 17:27:48] EmissionsData(timestamp='2024-12-03T17:27:48', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.0831521609798074, emissions=8.195962681479956e-05, emissions_rate=2.6583062572154492e-05, cpu_power=42.5, gpu_power=81.45146171903654, ram_power=0.34087371826171875, cpu_energy=7.673816447430808e-05, gpu_energy=0.00014468261574762664, ram_energy=6.111727029667126e-07, energy_consumed=0.00022203195292490145, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
128
+ [codecarbon DEBUG @ 17:27:48] EmissionsData(timestamp='2024-12-03T17:27:48', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.002026340924203396, emissions=8.195962681479956e-05, emissions_rate=0.040447106326404525, cpu_power=42.5, gpu_power=81.45146171903654, ram_power=0.34087371826171875, cpu_energy=7.673816447430808e-05, gpu_energy=0.00014468261574762664, ram_energy=6.111727029667126e-07, energy_consumed=0.00022203195292490145, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
129
+
130
  0%| | 0/1000 [00:00<?, ?it/s]
131
  3%|▎ | 32/1000 [00:00<00:03, 311.07it/s]
132
  6%|▋ | 64/1000 [00:00<00:03, 311.06it/s]
133
  10%|▉ | 97/1000 [00:00<00:02, 316.81it/s]
134
  13%|█▎ | 129/1000 [00:00<00:02, 317.07it/s]
135
  16%|█▌ | 161/1000 [00:00<00:02, 315.20it/s]
136
  19%|█▉ | 193/1000 [00:00<00:02, 313.51it/s]
137
  22%|██▎ | 225/1000 [00:00<00:02, 315.09it/s]
138
  26%|██▌ | 257/1000 [00:00<00:02, 315.17it/s]
139
  29%|██▉ | 289/1000 [00:00<00:02, 314.58it/s]
140
  32%|███▏ | 321/1000 [00:01<00:02, 313.05it/s]
141
  35%|███▌ | 353/1000 [00:01<00:02, 310.95it/s]
142
  38%|███▊ | 385/1000 [00:01<00:01, 311.14it/s]
143
  42%|████▏ | 417/1000 [00:01<00:01, 310.31it/s]
144
  45%|████▍ | 449/1000 [00:01<00:01, 310.19it/s]
145
  48%|████▊ | 481/1000 [00:01<00:01, 310.66it/s]
146
  51%|█████▏ | 513/1000 [00:01<00:01, 311.23it/s]
147
  55%|█████▍ | 545/1000 [00:01<00:01, 310.88it/s]
148
  58%|█████▊ | 577/1000 [00:01<00:01, 311.15it/s]
149
  61%|██████ | 609/1000 [00:01<00:01, 311.48it/s]
150
  64%|██████▍ | 641/1000 [00:02<00:01, 311.87it/s]
151
  67%|██████▋ | 673/1000 [00:02<00:01, 312.84it/s]
152
  70%|███████ | 705/1000 [00:02<00:00, 312.49it/s]
153
  74%|███████▎ | 737/1000 [00:02<00:00, 312.56it/s]
154
  77%|███████▋ | 769/1000 [00:02<00:00, 312.43it/s]
155
  80%|████████ | 801/1000 [00:02<00:00, 310.91it/s]
156
  83%|████████▎ | 833/1000 [00:02<00:00, 311.25it/s]
157
  86%|████████▋ | 865/1000 [00:02<00:00, 311.15it/s]
158
  90%|████████▉ | 897/1000 [00:02<00:00, 311.70it/s]
159
  93%|█████████▎| 929/1000 [00:02<00:00, 311.78it/s]
160
  96%|█████████▌| 961/1000 [00:03<00:00, 312.29it/s]
161
  99%|█████████▉| 993/1000 [00:03<00:00, 311.96it/s]
162
+ [codecarbon WARNING @ 17:27:51] Background scheduler didn't run for a long period (3s), results might be inaccurate
163
+ [codecarbon INFO @ 17:27:51] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34090232849121094 W
164
+ [codecarbon DEBUG @ 17:27:51] RAM : 0.34 W during 3.21 s [measurement time: 0.0004]
165
+ [codecarbon INFO @ 17:27:51] Energy consumed for all GPUs : 0.000216 kWh. Total GPU Power : 80.27951851539734 W
166
+ [codecarbon DEBUG @ 17:27:51] GPU : 80.28 W during 3.21 s [measurement time: 0.0064]
167
+ [codecarbon INFO @ 17:27:51] Energy consumed for all CPUs : 0.000115 kWh. Total CPU Power : 42.5 W
168
+ [codecarbon DEBUG @ 17:27:51] CPU : 42.50 W during 3.21 s [measurement time: 0.0000]
169
+ [codecarbon INFO @ 17:27:51] 0.000332 kWh of electricity used since the beginning.
170
+ [codecarbon DEBUG @ 17:27:51] last_duration=3.205060424050316
171
+ ------------------------
172
+ [codecarbon DEBUG @ 17:27:51] EmissionsData(timestamp='2024-12-03T17:27:51', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.212398014962673, emissions=0.0001224596736853669, emissions_rate=3.812095298122323e-05, cpu_power=42.5, gpu_power=80.27951851539734, ram_power=0.34090232849121094, cpu_energy=0.0001146611426885809, gpu_energy=0.00021617239516302789, ram_energy=9.146845304683606e-07, energy_consumed=0.00033174822238207714, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
173
+ [codecarbon DEBUG @ 17:27:51] EmissionsData(timestamp='2024-12-03T17:27:51', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.002021312015131116, emissions=0.0001224596736853669, emissions_rate=0.06058425060983143, cpu_power=42.5, gpu_power=80.27951851539734, ram_power=0.34090232849121094, cpu_energy=0.0001146611426885809, gpu_energy=0.00021617239516302789, ram_energy=9.146845304683606e-07, energy_consumed=0.00033174822238207714, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
174
+
175
  0%| | 0/1000 [00:00<?, ?it/s]
176
  3%|▎ | 32/1000 [00:00<00:03, 315.14it/s]
177
  6%|▋ | 64/1000 [00:00<00:02, 312.54it/s]
178
  10%|▉ | 96/1000 [00:00<00:02, 310.37it/s]
179
  13%|█▎ | 128/1000 [00:00<00:02, 310.66it/s]
180
  16%|█▌ | 161/1000 [00:00<00:02, 315.74it/s]
181
  19%|█▉ | 193/1000 [00:00<00:02, 315.35it/s]
182
  23%|██▎ | 226/1000 [00:00<00:02, 317.73it/s]
183
  26%|██▌ | 258/1000 [00:00<00:02, 317.67it/s]
184
  29%|██▉ | 290/1000 [00:00<00:02, 316.20it/s]
185
  32%|███▏ | 322/1000 [00:01<00:02, 315.07it/s]
186
  35%|███▌ | 354/1000 [00:01<00:02, 314.04it/s]
187
  39%|███▊ | 386/1000 [00:01<00:01, 312.44it/s]
188
  42%|████▏ | 418/1000 [00:01<00:01, 313.22it/s]
189
  45%|████▌ | 450/1000 [00:01<00:01, 312.61it/s]
190
  48%|████▊ | 482/1000 [00:01<00:01, 311.25it/s]
191
  51%|█████▏ | 514/1000 [00:01<00:01, 310.90it/s]
192
  55%|█████▍ | 546/1000 [00:01<00:01, 310.64it/s]
193
  58%|█████▊ | 578/1000 [00:01<00:01, 309.98it/s]
194
  61%|██████ | 609/1000 [00:01<00:01, 309.89it/s]
195
  64%|██████▍ | 640/1000 [00:02<00:01, 309.78it/s]
196
  67%|██████▋ | 672/1000 [00:02<00:01, 310.19it/s]
197
  70%|███████ | 704/1000 [00:02<00:00, 309.38it/s]
198
  74%|███████▎ | 735/1000 [00:02<00:00, 308.37it/s]
199
  77%|███████▋ | 767/1000 [00:02<00:00, 309.41it/s]
200
  80%|███████▉ | 798/1000 [00:02<00:00, 309.30it/s]
201
  83%|████████▎ | 830/1000 [00:02<00:00, 310.13it/s]
202
  86%|████████▌ | 862/1000 [00:02<00:00, 310.46it/s]
203
  89%|████████▉ | 894/1000 [00:02<00:00, 310.45it/s]
204
  93%|█████████▎| 926/1000 [00:02<00:00, 309.71it/s]
205
  96%|█████████▌| 958/1000 [00:03<00:00, 309.98it/s]
206
  99%|█████████▉| 990/1000 [00:03<00:00, 310.16it/s]
207
+ [codecarbon WARNING @ 17:27:54] Background scheduler didn't run for a long period (3s), results might be inaccurate
208
+ [codecarbon INFO @ 17:27:54] Energy consumed for RAM : 0.000001 kWh. RAM Power : 0.34090375900268555 W
209
+ [codecarbon DEBUG @ 17:27:54] RAM : 0.34 W during 3.21 s [measurement time: 0.0004]
210
+ [codecarbon INFO @ 17:27:54] Energy consumed for all GPUs : 0.000288 kWh. Total GPU Power : 80.02529425974497 W
211
+ [codecarbon DEBUG @ 17:27:54] GPU : 80.03 W during 3.21 s [measurement time: 0.0057]
212
+ [codecarbon INFO @ 17:27:54] Energy consumed for all CPUs : 0.000153 kWh. Total CPU Power : 42.5 W
213
+ [codecarbon DEBUG @ 17:27:54] CPU : 42.50 W during 3.22 s [measurement time: 0.0000]
214
+ [codecarbon INFO @ 17:27:54] 0.000441 kWh of electricity used since the beginning.
215
+ [codecarbon DEBUG @ 17:27:54] last_duration=3.2114167609252036
216
+ ------------------------
217
+ [codecarbon DEBUG @ 17:27:54] EmissionsData(timestamp='2024-12-03T17:27:54', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.2180411859881133, emissions=0.000162953254371185, emissions_rate=5.063740485383176e-05, cpu_power=42.5, gpu_power=80.02529425974497, ram_power=0.34090375900268555, cpu_energy=0.00015265072303025388, gpu_energy=0.00028757745228702447, ram_energy=1.218799365251766e-06, energy_consumed=0.0004414469746825301, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
218
+ [codecarbon DEBUG @ 17:27:54] EmissionsData(timestamp='2024-12-03T17:27:54', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.0020318119786679745, emissions=0.000162953254371185, emissions_rate=0.08020095170322537, cpu_power=42.5, gpu_power=80.02529425974497, ram_power=0.34090375900268555, cpu_energy=0.00015265072303025388, gpu_energy=0.00028757745228702447, ram_energy=1.218799365251766e-06, energy_consumed=0.0004414469746825301, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
219
+
220
  0%| | 0/1000 [00:00<?, ?it/s]
221
  3%|▎ | 33/1000 [00:00<00:02, 324.59it/s]
222
  7%|▋ | 66/1000 [00:00<00:02, 326.01it/s]
223
  10%|▉ | 99/1000 [00:00<00:02, 321.97it/s]
224
  13%|█▎ | 132/1000 [00:00<00:02, 316.99it/s]
225
  16%|█▋ | 164/1000 [00:00<00:02, 313.99it/s]
226
  20%|█▉ | 196/1000 [00:00<00:02, 313.96it/s]
227
  23%|██▎ | 228/1000 [00:00<00:02, 313.02it/s]
228
  26%|██▌ | 260/1000 [00:00<00:02, 312.28it/s]
229
  29%|██▉ | 292/1000 [00:00<00:02, 311.94it/s]
230
  32%|███▏ | 324/1000 [00:01<00:02, 311.88it/s]
231
  36%|███▌ | 356/1000 [00:01<00:02, 312.14it/s]
232
  39%|███▉ | 388/1000 [00:01<00:01, 311.78it/s]
233
  42%|████▏ | 420/1000 [00:01<00:01, 311.61it/s]
234
  45%|███���▌ | 452/1000 [00:01<00:01, 311.19it/s]
235
  48%|████▊ | 484/1000 [00:01<00:01, 310.47it/s]
236
  52%|█████▏ | 516/1000 [00:01<00:01, 309.75it/s]
237
  55%|█████▍ | 547/1000 [00:01<00:01, 309.75it/s]
238
  58%|█████▊ | 579/1000 [00:01<00:01, 309.94it/s]
239
  61%|██████ | 611/1000 [00:01<00:01, 311.17it/s]
240
  64%|██████▍ | 644/1000 [00:02<00:01, 314.36it/s]
241
  68%|██████▊ | 676/1000 [00:02<00:01, 313.77it/s]
242
  71%|███████ | 708/1000 [00:02<00:00, 314.04it/s]
243
  74%|███████▍ | 740/1000 [00:02<00:00, 313.31it/s]
244
  77%|███████▋ | 772/1000 [00:02<00:00, 312.91it/s]
245
  80%|████████ | 804/1000 [00:02<00:00, 312.55it/s]
246
  84%|████████▎ | 836/1000 [00:02<00:00, 312.58it/s]
247
  87%|████████▋ | 868/1000 [00:02<00:00, 312.68it/s]
248
  90%|█████████ | 900/1000 [00:02<00:00, 313.58it/s]
249
  93%|█████████▎| 932/1000 [00:02<00:00, 313.64it/s]
250
  96%|█████████▋| 964/1000 [00:03<00:00, 314.54it/s]
251
+ [codecarbon WARNING @ 17:27:57] Background scheduler didn't run for a long period (3s), results might be inaccurate
252
+ [codecarbon INFO @ 17:27:57] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.34090662002563477 W
253
+ [codecarbon DEBUG @ 17:27:57] RAM : 0.34 W during 3.20 s [measurement time: 0.0004]
254
+ [codecarbon INFO @ 17:27:57] Energy consumed for all GPUs : 0.000359 kWh. Total GPU Power : 80.50833834750415 W
255
+ [codecarbon DEBUG @ 17:27:57] GPU : 80.51 W during 3.20 s [measurement time: 0.0023]
256
+ [codecarbon INFO @ 17:27:57] Energy consumed for all CPUs : 0.000190 kWh. Total CPU Power : 42.5 W
257
+ [codecarbon DEBUG @ 17:27:57] CPU : 42.50 W during 3.20 s [measurement time: 0.0000]
258
+ [codecarbon INFO @ 17:27:57] 0.000551 kWh of electricity used since the beginning.
259
+ [codecarbon DEBUG @ 17:27:57] last_duration=3.1950438488274813
260
+ ------------------------
261
+ [codecarbon DEBUG @ 17:27:57] EmissionsData(timestamp='2024-12-03T17:27:57', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.198286573868245, emissions=0.0002033840723078556, emissions_rate=6.359157242806664e-05, cpu_power=42.5, gpu_power=80.50833834750415, ram_power=0.34090662002563477, cpu_energy=0.00019040710182032652, gpu_energy=0.00035904723168300734, ram_energy=1.5213666468569857e-06, energy_consumed=0.0005509757001501909, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
262
+ [codecarbon DEBUG @ 17:27:57] EmissionsData(timestamp='2024-12-03T17:27:57', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.002005632035434246, emissions=0.0002033840723078556, emissions_rate=0.1014064737272808, cpu_power=42.5, gpu_power=80.50833834750415, ram_power=0.34090662002563477, cpu_energy=0.00019040710182032652, gpu_energy=0.00035904723168300734, ram_energy=1.5213666468569857e-06, energy_consumed=0.0005509757001501909, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
263
+
264
  0%| | 0/1000 [00:00<?, ?it/s]
265
  3%|▎ | 33/1000 [00:00<00:02, 323.46it/s]
266
  7%|▋ | 66/1000 [00:00<00:02, 324.12it/s]
267
  10%|▉ | 99/1000 [00:00<00:02, 324.43it/s]
268
  13%|█▎ | 132/1000 [00:00<00:02, 324.96it/s]
269
  16%|█▋ | 165/1000 [00:00<00:02, 320.74it/s]
270
  20%|█▉ | 198/1000 [00:00<00:02, 317.59it/s]
271
  23%|██▎ | 230/1000 [00:00<00:02, 316.48it/s]
272
  26%|██▌ | 262/1000 [00:00<00:02, 313.69it/s]
273
  29%|██▉ | 294/1000 [00:00<00:02, 311.48it/s]
274
  33%|███▎ | 326/1000 [00:01<00:02, 311.48it/s]
275
  36%|███▌ | 358/1000 [00:01<00:02, 311.54it/s]
276
  39%|███▉ | 390/1000 [00:01<00:01, 310.29it/s]
277
  42%|████▏ | 422/1000 [00:01<00:01, 309.85it/s]
278
  45%|████▌ | 453/1000 [00:01<00:01, 309.84it/s]
279
  48%|████▊ | 484/1000 [00:01<00:01, 309.68it/s]
280
  52%|█████▏ | 516/1000 [00:01<00:01, 309.93it/s]
281
  55%|█████▍ | 548/1000 [00:01<00:01, 312.44it/s]
282
  58%|█████▊ | 581/1000 [00:01<00:01, 315.92it/s]
283
  61%|██████▏ | 614/1000 [00:01<00:01, 318.29it/s]
284
  65%|█████���▍ | 646/1000 [00:02<00:01, 317.50it/s]
285
  68%|██████▊ | 678/1000 [00:02<00:01, 314.48it/s]
286
  71%|███████ | 710/1000 [00:02<00:00, 313.08it/s]
287
  74%|███████▍ | 742/1000 [00:02<00:00, 312.59it/s]
288
  77%|███████▋ | 774/1000 [00:02<00:00, 312.00it/s]
289
  81%|████████ | 806/1000 [00:02<00:00, 311.11it/s]
290
  84%|████████▍ | 838/1000 [00:02<00:00, 308.79it/s]
291
  87%|████████▋ | 869/1000 [00:02<00:00, 308.61it/s]
292
  90%|█████████ | 900/1000 [00:02<00:00, 307.95it/s]
293
  93%|█████████▎| 931/1000 [00:02<00:00, 307.51it/s]
294
  96%|█████████▌| 962/1000 [00:03<00:00, 307.39it/s]
295
  99%|█████████▉| 993/1000 [00:03<00:00, 307.06it/s]
296
+ [codecarbon WARNING @ 17:28:00] Background scheduler didn't run for a long period (3s), results might be inaccurate
297
+ [codecarbon INFO @ 17:28:00] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.340909481048584 W
298
+ [codecarbon DEBUG @ 17:28:00] RAM : 0.34 W during 3.20 s [measurement time: 0.0005]
299
+ [codecarbon INFO @ 17:28:00] Energy consumed for all GPUs : 0.000431 kWh. Total GPU Power : 80.42918174151322 W
300
+ [codecarbon DEBUG @ 17:28:00] GPU : 80.43 W during 3.20 s [measurement time: 0.0022]
301
+ [codecarbon INFO @ 17:28:00] Energy consumed for all CPUs : 0.000228 kWh. Total CPU Power : 42.5 W
302
+ [codecarbon DEBUG @ 17:28:00] CPU : 42.50 W during 3.21 s [measurement time: 0.0000]
303
+ [codecarbon INFO @ 17:28:00] 0.000661 kWh of electricity used since the beginning.
304
+ [codecarbon DEBUG @ 17:28:00] last_duration=3.202793454984203
305
+ ------------------------
306
+ [codecarbon DEBUG @ 17:28:00] EmissionsData(timestamp='2024-12-03T17:28:00', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.2059976290911436, emissions=0.0002438871582391259, emissions_rate=7.607215801599472e-05, cpu_power=42.5, gpu_power=80.42918174151322, ram_power=0.340909481048584, cpu_energy=0.00022825435440819195, gpu_energy=0.000430621177830659, ram_energy=1.8246703072093944e-06, energy_consumed=0.0006607002025460604, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
307
+ [codecarbon DEBUG @ 17:28:00] EmissionsData(timestamp='2024-12-03T17:28:00', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.003235484939068556, emissions=0.0002438871582391259, emissions_rate=0.0753788575227728, cpu_power=42.5, gpu_power=80.42918174151322, ram_power=0.340909481048584, cpu_energy=0.00022825435440819195, gpu_energy=0.000430621177830659, ram_energy=1.8246703072093944e-06, energy_consumed=0.0006607002025460604, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
308
+
309
  0%| | 0/1000 [00:00<?, ?it/s]
310
  3%|▎ | 33/1000 [00:00<00:02, 322.86it/s]
311
  7%|▋ | 66/1000 [00:00<00:02, 323.01it/s]
312
  10%|▉ | 99/1000 [00:00<00:02, 316.72it/s]
313
  13%|█▎ | 131/1000 [00:00<00:02, 314.15it/s]
314
  16%|█▋ | 163/1000 [00:00<00:02, 311.28it/s]
315
  20%|█▉ | 195/1000 [00:00<00:02, 307.82it/s]
316
  23%|██▎ | 227/1000 [00:00<00:02, 308.79it/s]
317
  26%|██▌ | 258/1000 [00:00<00:02, 308.84it/s]
318
  29%|██▉ | 290/1000 [00:00<00:02, 309.47it/s]
319
  32%|███▏ | 322/1000 [00:01<00:02, 309.80it/s]
320
  35%|███▌ | 354/1000 [00:01<00:02, 311.02it/s]
321
  39%|███▊ | 386/1000 [00:01<00:01, 311.75it/s]
322
  42%|████▏ | 418/1000 [00:01<00:01, 312.02it/s]
323
  45%|████▌ | 450/1000 [00:01<00:01, 310.78it/s]
324
  48%|████▊ | 482/1000 [00:01<00:01, 311.58it/s]
325
  51%|█████▏ | 514/1000 [00:01<00:01, 310.87it/s]
326
  55%|█████▍ | 546/1000 [00:01<00:01, 311.02it/s]
327
  58%|█████▊ | 578/1000 [00:01<00:01, 310.64it/s]
328
  61%|██████ | 610/1000 [00:01<00:01, 310.66it/s]
329
  64%|██████▍ | 642/1000 [00:02<00:01, 311.24it/s]
330
  67%|██████▋ | 674/1000 [00:02<00:01, 311.18it/s]
331
  71%|███████ | 706/1000 [00:02<00:00, 311.15it/s]
332
  74%|███████▍ | 738/1000 [00:02<00:00, 310.86it/s]
333
  77%|███████▋ | 770/1000 [00:02<00:00, 310.51it/s]
334
  80%|████████ | 802/1000 [00:02<00:00, 310.01it/s]
335
  83%|████████▎ | 834/1000 [00:02<00:00, 310.57it/s]
336
  87%|████████▋ | 866/1000 [00:02<00:00, 310.72it/s]
337
  90%|████████▉ | 898/1000 [00:02<00:00, 310.53it/s]
338
  93%|█████████▎| 930/1000 [00:02<00:00, 309.85it/s]
339
  96%|█████████▌| 962/1000 [00:03<00:00, 311.33it/s]
340
  99%|█████████▉| 994/1000 [00:03<00:00, 312.62it/s]
341
+ [codecarbon WARNING @ 17:28:04] Background scheduler didn't run for a long period (3s), results might be inaccurate
342
+ [codecarbon INFO @ 17:28:04] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.340909481048584 W
343
+ [codecarbon DEBUG @ 17:28:04] RAM : 0.34 W during 3.22 s [measurement time: 0.0005]
344
+ [codecarbon INFO @ 17:28:04] Energy consumed for all GPUs : 0.000502 kWh. Total GPU Power : 79.9737333941352 W
345
+ [codecarbon DEBUG @ 17:28:04] GPU : 79.97 W during 3.22 s [measurement time: 0.0023]
346
+ [codecarbon INFO @ 17:28:04] Energy consumed for all CPUs : 0.000266 kWh. Total CPU Power : 42.5 W
347
+ [codecarbon DEBUG @ 17:28:04] CPU : 42.50 W during 3.22 s [measurement time: 0.0000]
348
+ [codecarbon INFO @ 17:28:04] 0.000770 kWh of electricity used since the beginning.
349
+ [codecarbon DEBUG @ 17:28:04] EmissionsData(timestamp='2024-12-03T17:28:04', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.218712278874591, emissions=0.00028440024936486055, emissions_rate=8.835839451431176e-05, cpu_power=42.5, gpu_power=79.9737333941352, ram_power=0.340909481048584, cpu_energy=0.00026625195854818837, gpu_energy=0.0005020706794347518, ram_energy=2.1291714365555452e-06, energy_consumed=0.0007704518094194957, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
350
+ [codecarbon INFO @ 17:28:04] 0.012599 g.CO2eq/s mean an estimation of 397.33480401749296 kg.CO2eq/year
351
+ [codecarbon DEBUG @ 17:28:04] last_duration=3.2154337328393012
352
+ ------------------------
353
+ [codecarbon DEBUG @ 17:28:04] EmissionsData(timestamp='2024-12-03T17:28:04', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.2190629618708044, emissions=0.00028440024936486055, emissions_rate=8.834876879810306e-05, cpu_power=42.5, gpu_power=79.9737333941352, ram_power=0.340909481048584, cpu_energy=0.00026625195854818837, gpu_energy=0.0005020706794347518, ram_energy=2.1291714365555452e-06, energy_consumed=0.0007704518094194957, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
354
+ [codecarbon DEBUG @ 17:28:04] EmissionsData(timestamp='2024-12-03T17:28:04', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.0020292322151362896, emissions=0.00028440024936486055, emissions_rate=0.14015165304566157, cpu_power=42.5, gpu_power=79.9737333941352, ram_power=0.340909481048584, cpu_energy=0.00026625195854818837, gpu_energy=0.0005020706794347518, ram_energy=2.1291714365555452e-06, energy_consumed=0.0007704518094194957, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
355
+
356
  0%| | 0/1000 [00:00<?, ?it/s]
357
  3%|▎ | 30/1000 [00:00<00:03, 296.80it/s]
358
  6%|▌ | 62/1000 [00:00<00:03, 306.17it/s]
359
  9%|▉ | 94/1000 [00:00<00:02, 309.08it/s]
360
  12%|█▎ | 125/1000 [00:00<00:02, 308.40it/s]
361
  16%|█▌ | 157/1000 [00:00<00:02, 309.83it/s]
362
  19%|█▉ | 189/1000 [00:00<00:02, 309.91it/s]
363
  22%|██▏ | 221/1000 [00:00<00:02, 310.34it/s]
364
  25%|██▌ | 253/1000 [00:00<00:02, 309.40it/s]
365
  28%|██▊ | 285/1000 [00:00<00:02, 309.61it/s]
366
  32%|███▏ | 316/1000 [00:01<00:02, 309.52it/s]
367
  35%|███▍ | 347/1000 [00:01<00:02, 309.20it/s]
368
  38%|███▊ | 378/1000 [00:01<00:02, 308.54it/s]
369
  41%|████ | 409/1000 [00:01<00:01, 307.17it/s]
370
  44%|████▍ | 440/1000 [00:01<00:01, 307.05it/s]
371
  47%|████▋ | 471/1000 [00:01<00:01, 307.68it/s]
372
  50%|█████ | 502/1000 [00:01<00:01, 308.07it/s]
373
  53%|█████▎ | 533/1000 [00:01<00:01, 308.47it/s]
374
  56%|█████▋ | 565/1000 [00:01<00:01, 308.94it/s]
375
  60%|█████▉ | 596/1000 [00:01<00:01, 308.43it/s]
376
  63%|██████▎ | 627/1000 [00:02<00:01, 308.66it/s]
377
  66%|██████▌ | 658/1000 [00:02<00:01, 308.69it/s]
378
  69%|██████▉ | 689/1000 [00:02<00:01, 307.93it/s]
379
  72%|███████▏ | 720/1000 [00:02<00:00, 308.49it/s]
380
  75%|███████▌ | 752/1000 [00:02<00:00, 309.91it/s]
381
  78%|███████▊ | 784/1000 [00:02<00:00, 310.83it/s]
382
  82%|████████▏ | 816/1000 [00:02<00:00, 311.94it/s]
383
  85%|████████▍ | 849/1000 [00:02<00:00, 315.26it/s]
384
  88%|████████▊ | 882/1000 [00:02<00:00, 317.95it/s]
385
  92%|█████████▏| 915/1000 [00:02<00:00, 319.69it/s]
386
  95%|█████████▍| 948/1000 [00:03<00:00, 319.72it/s]
387
  98%|█████████▊| 980/1000 [00:03<00:00, 314.51it/s]
388
+ [codecarbon WARNING @ 17:28:07] Background scheduler didn't run for a long period (3s), results might be inaccurate
389
+ [codecarbon INFO @ 17:28:07] Energy consumed for RAM : 0.000002 kWh. RAM Power : 0.3409123420715332 W
390
+ [codecarbon DEBUG @ 17:28:07] RAM : 0.34 W during 3.22 s [measurement time: 0.0004]
391
+ [codecarbon INFO @ 17:28:07] Energy consumed for all GPUs : 0.000574 kWh. Total GPU Power : 79.90649134801077 W
392
+ [codecarbon DEBUG @ 17:28:07] GPU : 79.91 W during 3.22 s [measurement time: 0.0056]
393
+ [codecarbon INFO @ 17:28:07] Energy consumed for all CPUs : 0.000304 kWh. Total CPU Power : 42.5 W
394
+ [codecarbon DEBUG @ 17:28:07] CPU : 42.50 W during 3.23 s [measurement time: 0.0000]
395
+ [codecarbon INFO @ 17:28:07] 0.000880 kWh of electricity used since the beginning.
396
+ [codecarbon DEBUG @ 17:28:07] last_duration=3.222660018131137
397
+ ------------------------
398
+ [codecarbon DEBUG @ 17:28:07] EmissionsData(timestamp='2024-12-03T17:28:07', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.2291442879941314, emissions=0.0003249955170073433, emissions_rate=0.00010064447049197139, cpu_power=42.5, gpu_power=79.90649134801077, ram_power=0.3409123420715332, cpu_energy=0.0003043726071419466, gpu_energy=0.0005736190700069699, ram_energy=2.4343586605649717e-06, energy_consumed=0.0008804260358094815, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
399
+ [codecarbon DEBUG @ 17:28:07] EmissionsData(timestamp='2024-12-03T17:28:07', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.0020259409211575985, emissions=0.0003249955170073433, emissions_rate=0.1604170751542176, cpu_power=42.5, gpu_power=79.90649134801077, ram_power=0.3409123420715332, cpu_energy=0.0003043726071419466, gpu_energy=0.0005736190700069699, ram_energy=2.4343586605649717e-06, energy_consumed=0.0008804260358094815, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
400
+
401
  0%| | 0/1000 [00:00<?, ?it/s]
402
  3%|▎ | 33/1000 [00:00<00:02, 325.26it/s]
403
  7%|▋ | 66/1000 [00:00<00:02, 325.74it/s]
404
  10%|▉ | 99/1000 [00:00<00:02, 325.98it/s]
405
  13%|█▎ | 132/1000 [00:00<00:02, 318.54it/s]
406
  16%|█▋ | 164/1000 [00:00<00:02, 314.42it/s]
407
  20%|█▉ | 196/1000 [00:00<00:02, 311.14it/s]
408
  23%|██▎ | 228/1000 [00:00<00:02, 305.68it/s]
409
  26%|██▌ | 259/1000 [00:00<00:02, 305.21it/s]
410
  29%|██▉ | 290/1000 [00:00<00:02, 304.95it/s]
411
  32%|███▏ | 321/1000 [00:01<00:02, 304.95it/s]
412
  35%|███▌ | 352/1000 [00:01<00:02, 305.51it/s]
413
  38%|███▊ | 383/1000 [00:01<00:02, 305.48it/s]
414
  41%|████▏ | 414/1000 [00:01<00:01, 304.74it/s]
415
  44%|████▍ | 445/1000 [00:01<00:01, 306.27it/s]
416
  48%|████▊ | 477/1000 [00:01<00:01, 307.59it/s]
417
  51%|█████ | 508/1000 [00:01<00:01, 306.71it/s]
418
  54%|█████▍ | 539/1000 [00:01<00:01, 306.13it/s]
419
  57%|█████▋ | 570/1000 [00:01<00:01, 305.34it/s]
420
  60%|██████ | 601/1000 [00:01<00:01, 305.54it/s]
421
  63%|██████▎ | 632/1000 [00:02<00:01, 305.66it/s]
422
  66%|██████▋ | 663/1000 [00:02<00:01, 306.23it/s]
423
  69%|██████▉ | 694/1000 [00:02<00:01, 305.99it/s]
424
  72%|██��████▎ | 725/1000 [00:02<00:00, 304.97it/s]
425
  76%|███████▌ | 756/1000 [00:02<00:00, 304.96it/s]
426
  79%|███████▉ | 789/1000 [00:02<00:00, 310.40it/s]
427
  82%|████████▏ | 822/1000 [00:02<00:00, 313.93it/s]
428
  86%|████████▌ | 855/1000 [00:02<00:00, 316.63it/s]
429
  89%|████████▊ | 887/1000 [00:02<00:00, 314.24it/s]
430
  92%|█████████▏| 919/1000 [00:02<00:00, 311.26it/s]
431
  95%|█████████▌| 951/1000 [00:03<00:00, 308.53it/s]
432
  98%|█████████▊| 982/1000 [00:03<00:00, 306.18it/s]
433
+ [codecarbon WARNING @ 17:28:10] Background scheduler didn't run for a long period (3s), results might be inaccurate
434
+ [codecarbon INFO @ 17:28:10] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.3409123420715332 W
435
+ [codecarbon DEBUG @ 17:28:10] RAM : 0.34 W during 3.24 s [measurement time: 0.0004]
436
+ [codecarbon INFO @ 17:28:10] Energy consumed for all GPUs : 0.000645 kWh. Total GPU Power : 79.20958686324002 W
437
+ [codecarbon DEBUG @ 17:28:10] GPU : 79.21 W during 3.24 s [measurement time: 0.0023]
438
+ [codecarbon INFO @ 17:28:10] Energy consumed for all CPUs : 0.000343 kWh. Total CPU Power : 42.5 W
439
+ [codecarbon DEBUG @ 17:28:10] CPU : 42.50 W during 3.25 s [measurement time: 0.0000]
440
+ [codecarbon INFO @ 17:28:10] 0.000990 kWh of electricity used since the beginning.
441
+ [codecarbon DEBUG @ 17:28:10] last_duration=3.243541341042146
442
+ ------------------------
443
+ [codecarbon DEBUG @ 17:28:10] EmissionsData(timestamp='2024-12-03T17:28:10', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.246739154914394, emissions=0.0003656073799658421, emissions_rate=0.00011260756177854453, cpu_power=42.5, gpu_power=79.20958686324002, ram_power=0.3409123420715332, cpu_energy=0.00034270095814588586, gpu_energy=0.0006450027382243206, ram_energy=2.7415232133732965e-06, energy_consumed=0.0009904452195835798, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
444
+ [codecarbon DEBUG @ 17:28:10] EmissionsData(timestamp='2024-12-03T17:28:10', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=0.002620323095470667, emissions=0.0003656073799658421, emissions_rate=0.13952759512665025, cpu_power=42.5, gpu_power=79.20958686324002, ram_power=0.3409123420715332, cpu_energy=0.00034270095814588586, gpu_energy=0.0006450027382243206, ram_energy=2.7415232133732965e-06, energy_consumed=0.0009904452195835798, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
445
+
446
  0%| | 0/1000 [00:00<?, ?it/s]
447
  3%|▎ | 31/1000 [00:00<00:03, 301.38it/s]
448
  6%|▋ | 63/1000 [00:00<00:03, 307.34it/s]
449
  10%|▉ | 96/1000 [00:00<00:02, 313.37it/s]
450
  13%|█▎ | 129/1000 [00:00<00:02, 316.40it/s]
451
  16%|█▌ | 162/1000 [00:00<00:02, 319.83it/s]
452
  20%|█▉ | 195/1000 [00:00<00:02, 321.40it/s]
453
  23%|██▎ | 228/1000 [00:00<00:02, 321.65it/s]
454
  26%|██▌ | 261/1000 [00:00<00:02, 320.03it/s]
455
  29%|██▉ | 294/1000 [00:00<00:02, 321.64it/s]
456
  33%|███▎ | 327/1000 [00:01<00:02, 323.21it/s]
457
  36%|███▌ | 360/1000 [00:01<00:01, 323.70it/s]
458
  39%|███▉ | 393/1000 [00:01<00:01, 324.03it/s]
459
  43%|████▎ | 427/1000 [00:01<00:01, 325.87it/s]
460
  46%|████▌ | 460/1000 [00:01<00:01, 326.08it/s]
461
  49%|████▉ | 493/1000 [00:01<00:01, 325.62it/s]
462
  53%|█████▎ | 526/1000 [00:01<00:01, 325.88it/s]
463
  56%|█████▌ | 559/1000 [00:01<00:01, 325.86it/s]
464
  59%|█████▉ | 592/1000 [00:01<00:01, 326.28it/s]
465
  62%|██████▎ | 625/1000 [00:01<00:01, 326.71it/s]
466
  66%|██████▌ | 658/1000 [00:02<00:01, 325.83it/s]
467
  69%|██████▉ | 691/1000 [00:02<00:00, 325.76it/s]
468
  72%|███████▏ | 724/1000 [00:02<00:00, 325.52it/s]
469
  76%|███████▌ | 757/1000 [00:02<00:00, 325.40it/s]
470
  79%|███████▉ | 790/1000 [00:02<00:00, 325.81it/s]
471
  82%|████████▏ | 823/1000 [00:02<00:00, 324.75it/s]
472
  86%|████████▌ | 856/1000 [00:02<00:00, 325.22it/s]
473
  89%|████████▉ | 889/1000 [00:02<00:00, 324.63it/s]
474
  92%|█████████▏| 922/1000 [00:02<00:00, 323.30it/s]
475
  96%|█████████▌| 955/1000 [00:02<00:00, 323.36it/s]
476
  99%|█████████▉| 988/1000 [00:03<00:00, 322.75it/s]
477
+ [codecarbon WARNING @ 17:28:13] Background scheduler didn't run for a long period (3s), results might be inaccurate
478
+ [codecarbon INFO @ 17:28:13] Energy consumed for RAM : 0.000003 kWh. RAM Power : 0.3409123420715332 W
479
+ [codecarbon DEBUG @ 17:28:13] RAM : 0.34 W during 3.10 s [measurement time: 0.0004]
480
+ [codecarbon INFO @ 17:28:13] Energy consumed for all GPUs : 0.000715 kWh. Total GPU Power : 80.98731760148895 W
481
+ [codecarbon DEBUG @ 17:28:13] GPU : 80.99 W during 3.10 s [measurement time: 0.0035]
482
+ [codecarbon INFO @ 17:28:13] Energy consumed for all CPUs : 0.000379 kWh. Total CPU Power : 42.5 W
483
+ [codecarbon DEBUG @ 17:28:13] CPU : 42.50 W during 3.10 s [measurement time: 0.0000]
484
+ [codecarbon INFO @ 17:28:13] 0.001097 kWh of electricity used since the beginning.
485
+ [codecarbon DEBUG @ 17:28:13] last_duration=3.0973922731354833
486
+ ------------------------
487
+ [codecarbon DEBUG @ 17:28:13] EmissionsData(timestamp='2024-12-03T17:28:13', project_name='codecarbon', run_id='732fc27a-1994-4201-9f5c-c78f30ffb9be', duration=3.101867353077978, emissions=0.00040496082985680935, emissions_rate=0.00013055388376133085, cpu_power=42.5, gpu_power=80.98731760148895, ram_power=0.3409123420715332, cpu_energy=0.00037931905859958436, gpu_energy=0.0007147014050943312, ram_energy=3.034847628709558e-06, energy_consumed=0.0010970553113226252, country_name='United States', country_iso_code='USA', region='virginia', cloud_provider='', cloud_region='', os='Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35', python_version='3.9.20', codecarbon_version='2.5.1', cpu_count=48, cpu_model='AMD EPYC 7R32', gpu_count=1, gpu_model='1 x NVIDIA A10G', longitude=-77.4903, latitude=39.0469, ram_total_size=186.7047882080078, tracking_mode='process', on_cloud='N', pue=1.0)
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "sentence_similarity_udever-bloom-7b1",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "sentence-similarity",
8
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
9
+ "processor": "sentence-transformers/all-MiniLM-L6-v2",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/sentence_similarity",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/forward_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:28:13",
3
+ "project_name": "codecarbon",
4
+ "run_id": "732fc27a-1994-4201-9f5c-c78f30ffb9be",
5
+ "duration": -1732038007.215988,
6
+ "emissions": 3.9353449890967254e-05,
7
+ "emissions_rate": 1.2697745455672623e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 80.98731760148895,
10
+ "ram_power": 0.3409123420715332,
11
+ "cpu_energy": 3.661810045369851e-05,
12
+ "gpu_energy": 6.969866687001058e-05,
13
+ "ram_energy": 2.9332441533626145e-07,
14
+ "energy_consumed": 0.00010661009173904543,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/all-MiniLM-L6-v2/2024-12-03-17-27-27/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:27:40",
3
+ "project_name": "codecarbon",
4
+ "run_id": "732fc27a-1994-4201-9f5c-c78f30ffb9be",
5
+ "duration": -1732038010.1533983,
6
+ "emissions": 2.1014826534480243e-06,
7
+ "emissions_rate": 1.2980228898053656e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 83.40582264689574,
10
+ "ram_power": 0.2655043601989746,
11
+ "cpu_energy": 1.9352999284617707e-06,
12
+ "gpu_energy": 3.745836330892871e-06,
13
+ "ram_energy": 1.1865474745674232e-08,
14
+ "energy_consumed": 5.693001734100316e-06,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: sentence-similarity
6
+ model: sentence-transformers/all-mpnet-base-v2
7
+ processor: sentence-transformers/all-mpnet-base-v2
8
+ library: transformers
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: true
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/sentence_similarity
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs: {}
66
+ call_kwargs: {}
67
+ experiment_name: sentence_similarity_udever-bloom-7b1
68
+ environment:
69
+ cpu: ' AMD EPYC 7R32'
70
+ cpu_count: 48
71
+ cpu_ram_mb: 200472.73984
72
+ system: Linux
73
+ machine: x86_64
74
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
75
+ processor: x86_64
76
+ python_version: 3.9.20
77
+ gpu:
78
+ - NVIDIA A10G
79
+ gpu_count: 1
80
+ gpu_vram_mb: 24146608128
81
+ optimum_benchmark_version: 0.2.0
82
+ optimum_benchmark_commit: null
83
+ transformers_version: 4.44.0
84
+ transformers_commit: null
85
+ accelerate_version: 0.33.0
86
+ accelerate_commit: null
87
+ diffusers_version: 0.30.0
88
+ diffusers_commit: null
89
+ optimum_version: null
90
+ optimum_commit: null
91
+ timm_version: null
92
+ timm_commit: null
93
+ peft_version: null
94
+ peft_commit: null
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=sentence-transformers/all-mpnet-base-v2
125
+ - backend.processor=sentence-transformers/all-mpnet-base-v2
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=sentence-transformers/all-mpnet-base-v2,backend.processor=sentence-transformers/all-mpnet-base-v2
130
+ id: ???
131
+ num: ???
132
+ config_name: sentence_similarity
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=sentence-transformers/all-mpnet-base-v2
2
+ - backend.processor=sentence-transformers/all-mpnet-base-v2
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/benchmark_report.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "forward": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 0.0001368727761635738,
9
+ "ram": 1.125447398444666e-06,
10
+ "gpu": 0.00028985156521450507,
11
+ "total": 0.00042784978877652365
12
+ },
13
+ "efficiency": {
14
+ "unit": "samples/kWh",
15
+ "value": 2337268.88789543
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 0.0001497519347842576,
21
+ "ram": 1.230741972092412e-06,
22
+ "gpu": 0.0003129910837280647,
23
+ "total": 0.00046397376048441476
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 0.00015361667946158883,
28
+ "ram": 1.2625436009593141e-06,
29
+ "gpu": 0.0003167702534128125,
30
+ "total": 0.00047164947647536067
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 0.0001510782193575223,
35
+ "ram": 1.2422966241456202e-06,
36
+ "gpu": 0.00031434747370440164,
37
+ "total": 0.00046666798968606946
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 0.00015223707832030613,
42
+ "ram": 1.2519759104361581e-06,
43
+ "gpu": 0.00032263886922123675,
44
+ "total": 0.00047612792345197896
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 0.00015091316287483398,
49
+ "ram": 1.241081421786638e-06,
50
+ "gpu": 0.000324814704296017,
51
+ "total": 0.00047696894859263774
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 0.00015458776705248357,
56
+ "ram": 1.271312222531878e-06,
57
+ "gpu": 0.00032946415245760363,
58
+ "total": 0.00048532323173261895
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 0.00015538338689802906,
70
+ "ram": 1.2778503315998463e-06,
71
+ "gpu": 0.0003299547084090193,
72
+ "total": 0.00048661594563864825
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 0.0001513746212404739,
77
+ "ram": 1.24488106983291e-06,
78
+ "gpu": 0.00032526359354179135,
79
+ "total": 0.00047788309585209895
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 0.00014978491164624247,
84
+ "ram": 1.2317908310618835e-06,
85
+ "gpu": 0.0003222708133741037,
86
+ "total": 0.00047328751585140865
87
+ }
88
+ ]
89
+ },
90
+ "preprocess": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 1.930021205205574e-06,
97
+ "ram": 1.1912929464276134e-08,
98
+ "gpu": 3.659169593106526e-06,
99
+ "total": 5.601103727776376e-06
100
+ },
101
+ "efficiency": {
102
+ "unit": "samples/kWh",
103
+ "value": 178536240.10584027
104
+ },
105
+ "measures": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/cli.log ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-03 17:25:04,331][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-03 17:25:04,331][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-03 17:25:04,342][device-isolation][INFO] - + Launched device(s) isolation process 180
4
+ [2024-12-03 17:25:04,342][device-isolation][INFO] - + Isolating device(s) [0]
5
+ [2024-12-03 17:25:04,347][process][INFO] - + Launched benchmark in isolated process 181.
6
+ [PROC-0][2024-12-03 17:25:07,150][datasets][INFO] - PyTorch version 2.4.0 available.
7
+ [PROC-0][2024-12-03 17:25:08,105][backend][INFO] - َAllocating pytorch backend
8
+ [PROC-0][2024-12-03 17:25:08,105][backend][INFO] - + Setting random seed to 42
9
+ [PROC-0][2024-12-03 17:25:09,296][pytorch][INFO] - + Using AutoModel class AutoModel
10
+ [PROC-0][2024-12-03 17:25:09,296][pytorch][INFO] - + Creating backend temporary directory
11
+ [PROC-0][2024-12-03 17:25:09,296][pytorch][INFO] - + Loading model with random weights
12
+ [PROC-0][2024-12-03 17:25:09,296][pytorch][INFO] - + Creating no weights model
13
+ [PROC-0][2024-12-03 17:25:09,297][pytorch][INFO] - + Creating no weights model directory
14
+ [PROC-0][2024-12-03 17:25:09,297][pytorch][INFO] - + Creating no weights model state dict
15
+ [PROC-0][2024-12-03 17:25:09,299][pytorch][INFO] - + Saving no weights model safetensors
16
+ [PROC-0][2024-12-03 17:25:09,299][pytorch][INFO] - + Saving no weights model pretrained config
17
+ [PROC-0][2024-12-03 17:25:09,300][pytorch][INFO] - + Loading no weights AutoModel
18
+ [PROC-0][2024-12-03 17:25:09,300][pytorch][INFO] - + Loading model directly on device: cuda
19
+ [PROC-0][2024-12-03 17:25:09,606][pytorch][INFO] - + Turning on model's eval mode
20
+ [PROC-0][2024-12-03 17:25:09,612][benchmark][INFO] - Allocating energy_star benchmark
21
+ [PROC-0][2024-12-03 17:25:09,612][energy_star][INFO] - + Loading raw dataset
22
+ [PROC-0][2024-12-03 17:25:11,765][energy_star][INFO] - + Initializing Inference report
23
+ [PROC-0][2024-12-03 17:25:11,765][energy][INFO] - + Tracking GPU energy on devices [0]
24
+ [PROC-0][2024-12-03 17:25:15,960][energy_star][INFO] - + Preprocessing dataset
25
+ [PROC-0][2024-12-03 17:25:16,125][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
26
+ [PROC-0][2024-12-03 17:25:16,125][energy_star][INFO] - + Preparing backend for Inference
27
+ [PROC-0][2024-12-03 17:25:16,125][energy_star][INFO] - + Initialising dataloader
28
+ [PROC-0][2024-12-03 17:25:16,126][energy_star][INFO] - + Warming up backend for Inference
29
+ [PROC-0][2024-12-03 17:25:16,653][energy_star][INFO] - + Running Inference energy tracking for 10 iterations
30
+ [PROC-0][2024-12-03 17:25:16,653][energy_star][INFO] - + Iteration 1/10
31
+ [PROC-0][2024-12-03 17:25:29,338][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
32
+ [PROC-0][2024-12-03 17:25:29,339][energy_star][INFO] - + Iteration 2/10
33
+ [PROC-0][2024-12-03 17:25:42,352][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
34
+ [PROC-0][2024-12-03 17:25:42,352][energy_star][INFO] - + Iteration 3/10
35
+ [PROC-0][2024-12-03 17:25:55,150][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
36
+ [PROC-0][2024-12-03 17:25:55,150][energy_star][INFO] - + Iteration 4/10
37
+ [PROC-0][2024-12-03 17:26:08,046][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
38
+ [PROC-0][2024-12-03 17:26:08,047][energy_star][INFO] - + Iteration 5/10
39
+ [PROC-0][2024-12-03 17:26:20,831][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
40
+ [PROC-0][2024-12-03 17:26:20,831][energy_star][INFO] - + Iteration 6/10
41
+ [PROC-0][2024-12-03 17:26:33,926][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
42
+ [PROC-0][2024-12-03 17:26:33,927][energy_star][INFO] - + Iteration 7/10
43
+ [PROC-0][2024-12-03 17:26:46,756][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
44
+ [PROC-0][2024-12-03 17:26:46,757][energy_star][INFO] - + Iteration 8/10
45
+ [PROC-0][2024-12-03 17:26:59,919][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
46
+ [PROC-0][2024-12-03 17:26:59,920][energy_star][INFO] - + Iteration 9/10
47
+ [PROC-0][2024-12-03 17:27:12,743][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
48
+ [PROC-0][2024-12-03 17:27:12,743][energy_star][INFO] - + Iteration 10/10
49
+ [PROC-0][2024-12-03 17:27:25,431][energy][INFO] - + Saving codecarbon emission data to forward_codecarbon.json
50
+ [PROC-0][2024-12-03 17:27:25,432][energy][INFO] - + forward energy consumption:
51
+ [PROC-0][2024-12-03 17:27:25,432][energy][INFO] - + CPU: 0.000137 (kWh)
52
+ [PROC-0][2024-12-03 17:27:25,432][energy][INFO] - + GPU: 0.000290 (kWh)
53
+ [PROC-0][2024-12-03 17:27:25,432][energy][INFO] - + RAM: 0.000001 (kWh)
54
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + total: 0.000428 (kWh)
55
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + forward_iteration_1 energy consumption:
56
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + CPU: 0.000150 (kWh)
57
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + GPU: 0.000313 (kWh)
58
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + RAM: 0.000001 (kWh)
59
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + total: 0.000464 (kWh)
60
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + forward_iteration_2 energy consumption:
61
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + CPU: 0.000154 (kWh)
62
+ [PROC-0][2024-12-03 17:27:25,433][energy][INFO] - + GPU: 0.000317 (kWh)
63
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + RAM: 0.000001 (kWh)
64
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + total: 0.000472 (kWh)
65
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + forward_iteration_3 energy consumption:
66
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + CPU: 0.000151 (kWh)
67
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + GPU: 0.000314 (kWh)
68
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + RAM: 0.000001 (kWh)
69
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + total: 0.000467 (kWh)
70
+ [PROC-0][2024-12-03 17:27:25,434][energy][INFO] - + forward_iteration_4 energy consumption:
71
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + CPU: 0.000152 (kWh)
72
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + GPU: 0.000323 (kWh)
73
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + RAM: 0.000001 (kWh)
74
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + total: 0.000476 (kWh)
75
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + forward_iteration_5 energy consumption:
76
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + CPU: 0.000151 (kWh)
77
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + GPU: 0.000325 (kWh)
78
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + RAM: 0.000001 (kWh)
79
+ [PROC-0][2024-12-03 17:27:25,435][energy][INFO] - + total: 0.000477 (kWh)
80
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + forward_iteration_6 energy consumption:
81
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + CPU: 0.000155 (kWh)
82
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + GPU: 0.000329 (kWh)
83
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + RAM: 0.000001 (kWh)
84
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + total: 0.000485 (kWh)
85
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + forward_iteration_7 energy consumption:
86
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + CPU: 0.000000 (kWh)
87
+ [PROC-0][2024-12-03 17:27:25,436][energy][INFO] - + GPU: 0.000000 (kWh)
88
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + RAM: 0.000000 (kWh)
89
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + total: 0.000000 (kWh)
90
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + forward_iteration_8 energy consumption:
91
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + CPU: 0.000155 (kWh)
92
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + GPU: 0.000330 (kWh)
93
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + RAM: 0.000001 (kWh)
94
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + total: 0.000487 (kWh)
95
+ [PROC-0][2024-12-03 17:27:25,437][energy][INFO] - + forward_iteration_9 energy consumption:
96
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + CPU: 0.000151 (kWh)
97
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + GPU: 0.000325 (kWh)
98
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + RAM: 0.000001 (kWh)
99
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + total: 0.000478 (kWh)
100
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + forward_iteration_10 energy consumption:
101
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + CPU: 0.000150 (kWh)
102
+ [PROC-0][2024-12-03 17:27:25,438][energy][INFO] - + GPU: 0.000322 (kWh)
103
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + RAM: 0.000001 (kWh)
104
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + total: 0.000473 (kWh)
105
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + preprocess energy consumption:
106
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + CPU: 0.000002 (kWh)
107
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + GPU: 0.000004 (kWh)
108
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-03 17:27:25,439][energy][INFO] - + total: 0.000006 (kWh)
110
+ [PROC-0][2024-12-03 17:27:25,440][energy][INFO] - + forward energy efficiency: 2337268.887895 (samples/kWh)
111
+ [PROC-0][2024-12-03 17:27:25,440][energy][INFO] - + preprocess energy efficiency: 178536240.105840 (samples/kWh)
112
+ [2024-12-03 17:27:26,219][device-isolation][INFO] - + Closing device(s) isolation process...
113
+ [2024-12-03 17:27:26,271][datasets][INFO] - PyTorch version 2.4.0 available.
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/error.log ADDED
The diff for this file is too large to render. See raw diff
 
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/experiment_config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "sentence_similarity_udever-bloom-7b1",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "sentence-similarity",
8
+ "model": "sentence-transformers/all-mpnet-base-v2",
9
+ "processor": "sentence-transformers/all-mpnet-base-v2",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": true,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/sentence_similarity",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {},
76
+ "call_kwargs": {}
77
+ },
78
+ "environment": {
79
+ "cpu": " AMD EPYC 7R32",
80
+ "cpu_count": 48,
81
+ "cpu_ram_mb": 200472.73984,
82
+ "system": "Linux",
83
+ "machine": "x86_64",
84
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
85
+ "processor": "x86_64",
86
+ "python_version": "3.9.20",
87
+ "gpu": [
88
+ "NVIDIA A10G"
89
+ ],
90
+ "gpu_count": 1,
91
+ "gpu_vram_mb": 24146608128,
92
+ "optimum_benchmark_version": "0.2.0",
93
+ "optimum_benchmark_commit": null,
94
+ "transformers_version": "4.44.0",
95
+ "transformers_commit": null,
96
+ "accelerate_version": "0.33.0",
97
+ "accelerate_commit": null,
98
+ "diffusers_version": "0.30.0",
99
+ "diffusers_commit": null,
100
+ "optimum_version": null,
101
+ "optimum_commit": null,
102
+ "timm_version": null,
103
+ "timm_commit": null,
104
+ "peft_version": null,
105
+ "peft_commit": null
106
+ }
107
+ }
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/forward_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:27:25",
3
+ "project_name": "codecarbon",
4
+ "run_id": "ea6e7f2a-efe7-45bc-ae2f-b60652620784",
5
+ "duration": -1732037997.6294475,
6
+ "emissions": 0.00017470669272726352,
7
+ "emissions_rate": 1.377189445784994e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 91.4581441653853,
10
+ "ram_power": 0.3495941162109375,
11
+ "cpu_energy": 0.00014978491164624247,
12
+ "gpu_energy": 0.0003222708133741037,
13
+ "ram_energy": 1.2317908310618835e-06,
14
+ "energy_consumed": 0.00047328751585140865,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
sentence_similarity/sentence-transformers/all-mpnet-base-v2/2024-12-03-17-25-01/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:25:16",
3
+ "project_name": "codecarbon",
4
+ "run_id": "ea6e7f2a-efe7-45bc-ae2f-b60652620784",
5
+ "duration": -1732038010.154033,
6
+ "emissions": 2.0675599400542375e-06,
7
+ "emissions_rate": 1.2814570153434283e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 81.73342715271622,
10
+ "ram_power": 0.26745128631591797,
11
+ "cpu_energy": 1.930021205205574e-06,
12
+ "gpu_energy": 3.659169593106526e-06,
13
+ "ram_energy": 1.1912929464276134e-08,
14
+ "energy_consumed": 5.601103727776376e-06,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/config.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.4.0
4
+ _target_: optimum_benchmark.backends.pytorch.backend.PyTorchBackend
5
+ task: text-generation
6
+ model: Qwen/Qwen2.5-1.5B-Instruct
7
+ processor: Qwen/Qwen2.5-1.5B-Instruct
8
+ library: null
9
+ device: cuda
10
+ device_ids: '0'
11
+ seed: 42
12
+ inter_op_num_threads: null
13
+ intra_op_num_threads: null
14
+ hub_kwargs: {}
15
+ no_weights: true
16
+ device_map: null
17
+ torch_dtype: null
18
+ amp_autocast: false
19
+ amp_dtype: null
20
+ eval_mode: true
21
+ to_bettertransformer: false
22
+ low_cpu_mem_usage: null
23
+ attn_implementation: null
24
+ cache_implementation: null
25
+ torch_compile: false
26
+ torch_compile_config: {}
27
+ quantization_scheme: null
28
+ quantization_config: {}
29
+ deepspeed_inference: false
30
+ deepspeed_inference_config: {}
31
+ peft_type: null
32
+ peft_config: {}
33
+ launcher:
34
+ name: process
35
+ _target_: optimum_benchmark.launchers.process.launcher.ProcessLauncher
36
+ device_isolation: false
37
+ device_isolation_action: warn
38
+ start_method: spawn
39
+ benchmark:
40
+ name: energy_star
41
+ _target_: optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark
42
+ dataset_name: EnergyStarAI/text_generation
43
+ dataset_config: ''
44
+ dataset_split: train
45
+ num_samples: 1000
46
+ input_shapes:
47
+ batch_size: 1
48
+ text_column_name: text
49
+ truncation: true
50
+ max_length: -1
51
+ dataset_prefix1: ''
52
+ dataset_prefix2: ''
53
+ t5_task: ''
54
+ image_column_name: image
55
+ resize: false
56
+ question_column_name: question
57
+ context_column_name: context
58
+ sentence1_column_name: sentence1
59
+ sentence2_column_name: sentence2
60
+ audio_column_name: audio
61
+ iterations: 10
62
+ warmup_runs: 10
63
+ energy: true
64
+ forward_kwargs: {}
65
+ generate_kwargs:
66
+ max_new_tokens: 10
67
+ min_new_tokens: 10
68
+ call_kwargs: {}
69
+ experiment_name: text_generation
70
+ environment:
71
+ cpu: ' AMD EPYC 7R32'
72
+ cpu_count: 48
73
+ cpu_ram_mb: 200472.73984
74
+ system: Linux
75
+ machine: x86_64
76
+ platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
77
+ processor: x86_64
78
+ python_version: 3.9.20
79
+ gpu:
80
+ - NVIDIA A10G
81
+ gpu_count: 1
82
+ gpu_vram_mb: 24146608128
83
+ optimum_benchmark_version: 0.2.0
84
+ optimum_benchmark_commit: null
85
+ transformers_version: 4.44.0
86
+ transformers_commit: null
87
+ accelerate_version: 0.33.0
88
+ accelerate_commit: null
89
+ diffusers_version: 0.30.0
90
+ diffusers_commit: null
91
+ optimum_version: null
92
+ optimum_commit: null
93
+ timm_version: null
94
+ timm_commit: null
95
+ peft_version: null
96
+ peft_commit: null
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/hydra.yaml ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: /runs/text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15
4
+ sweep:
5
+ dir: sweeps/${experiment_name}/${backend.model}/${now:%Y-%m-%d-%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ colorlog:
72
+ (): colorlog.ColoredFormatter
73
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(purple)sHYDRA%(reset)s] %(message)s'
74
+ handlers:
75
+ console:
76
+ class: logging.StreamHandler
77
+ formatter: colorlog
78
+ stream: ext://sys.stdout
79
+ root:
80
+ level: INFO
81
+ handlers:
82
+ - console
83
+ disable_existing_loggers: false
84
+ job_logging:
85
+ version: 1
86
+ formatters:
87
+ simple:
88
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
89
+ colorlog:
90
+ (): colorlog.ColoredFormatter
91
+ format: '[%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s]
92
+ - %(message)s'
93
+ log_colors:
94
+ DEBUG: purple
95
+ INFO: green
96
+ WARNING: yellow
97
+ ERROR: red
98
+ CRITICAL: red
99
+ handlers:
100
+ console:
101
+ class: logging.StreamHandler
102
+ formatter: colorlog
103
+ stream: ext://sys.stdout
104
+ file:
105
+ class: logging.FileHandler
106
+ formatter: simple
107
+ filename: ${hydra.job.name}.log
108
+ root:
109
+ level: INFO
110
+ handlers:
111
+ - console
112
+ - file
113
+ disable_existing_loggers: false
114
+ env: {}
115
+ mode: RUN
116
+ searchpath: []
117
+ callbacks: {}
118
+ output_subdir: .hydra
119
+ overrides:
120
+ hydra:
121
+ - hydra.run.dir=/runs/text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15
122
+ - hydra.mode=RUN
123
+ task:
124
+ - backend.model=Qwen/Qwen2.5-1.5B-Instruct
125
+ - backend.processor=Qwen/Qwen2.5-1.5B-Instruct
126
+ job:
127
+ name: cli
128
+ chdir: true
129
+ override_dirname: backend.model=Qwen/Qwen2.5-1.5B-Instruct,backend.processor=Qwen/Qwen2.5-1.5B-Instruct
130
+ id: ???
131
+ num: ???
132
+ config_name: text_generation
133
+ env_set:
134
+ OVERRIDE_BENCHMARKS: '1'
135
+ env_copy: []
136
+ config:
137
+ override_dirname:
138
+ kv_sep: '='
139
+ item_sep: ','
140
+ exclude_keys: []
141
+ runtime:
142
+ version: 1.3.2
143
+ version_base: '1.3'
144
+ cwd: /
145
+ config_sources:
146
+ - path: hydra.conf
147
+ schema: pkg
148
+ provider: hydra
149
+ - path: optimum_benchmark
150
+ schema: pkg
151
+ provider: main
152
+ - path: hydra_plugins.hydra_colorlog.conf
153
+ schema: pkg
154
+ provider: hydra-colorlog
155
+ - path: /optimum-benchmark/examples/energy_star
156
+ schema: file
157
+ provider: command-line
158
+ - path: ''
159
+ schema: structured
160
+ provider: schema
161
+ output_dir: /runs/text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15
162
+ choices:
163
+ benchmark: energy_star
164
+ launcher: process
165
+ backend: pytorch
166
+ hydra/env: default
167
+ hydra/callbacks: null
168
+ hydra/job_logging: colorlog
169
+ hydra/hydra_logging: colorlog
170
+ hydra/hydra_help: default
171
+ hydra/help: default
172
+ hydra/sweeper: basic
173
+ hydra/launcher: basic
174
+ hydra/output: default
175
+ verbose: false
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/.hydra/overrides.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ - backend.model=Qwen/Qwen2.5-1.5B-Instruct
2
+ - backend.processor=Qwen/Qwen2.5-1.5B-Instruct
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/benchmark_report.json ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prefill": {
3
+ "memory": null,
4
+ "latency": null,
5
+ "throughput": null,
6
+ "energy": {
7
+ "unit": "kWh",
8
+ "cpu": 0.0010418709821750558,
9
+ "ram": 1.0953713643581138e-05,
10
+ "gpu": 0.007092562618490205,
11
+ "total": 0.008145387314308843
12
+ },
13
+ "efficiency": {
14
+ "unit": "tokens/kWh",
15
+ "value": 45080238.15576626
16
+ },
17
+ "measures": [
18
+ {
19
+ "unit": "kWh",
20
+ "cpu": 0.0011555923595744793,
21
+ "ram": 1.2143097296669118e-05,
22
+ "gpu": 0.007837941270352644,
23
+ "total": 0.009005676727223794
24
+ },
25
+ {
26
+ "unit": "kWh",
27
+ "cpu": 0.0011594787622979817,
28
+ "ram": 1.2190883540975133e-05,
29
+ "gpu": 0.007902485210870225,
30
+ "total": 0.009074154856709178
31
+ },
32
+ {
33
+ "unit": "kWh",
34
+ "cpu": 0.0011582189328738926,
35
+ "ram": 1.217762978589195e-05,
36
+ "gpu": 0.007888568255292938,
37
+ "total": 0.009058964817952722
38
+ },
39
+ {
40
+ "unit": "kWh",
41
+ "cpu": 0.001159144954830764,
42
+ "ram": 1.2187836482917828e-05,
43
+ "gpu": 0.007895471871925963,
44
+ "total": 0.009066804663239642
45
+ },
46
+ {
47
+ "unit": "kWh",
48
+ "cpu": 0.0011585775511323134,
49
+ "ram": 1.2181541224197516e-05,
50
+ "gpu": 0.007896707706251505,
51
+ "total": 0.009067466798608016
52
+ },
53
+ {
54
+ "unit": "kWh",
55
+ "cpu": 0.0011568082172462406,
56
+ "ram": 1.2162725202305627e-05,
57
+ "gpu": 0.007875069355609554,
58
+ "total": 0.009044040298058102
59
+ },
60
+ {
61
+ "unit": "kWh",
62
+ "cpu": 0.0,
63
+ "ram": 0.0,
64
+ "gpu": 0.0,
65
+ "total": 0.0
66
+ },
67
+ {
68
+ "unit": "kWh",
69
+ "cpu": 0.0011532540819043386,
70
+ "ram": 1.212521027946189e-05,
71
+ "gpu": 0.00784004377203118,
72
+ "total": 0.009005423064214979
73
+ },
74
+ {
75
+ "unit": "kWh",
76
+ "cpu": 0.0011591664140610698,
77
+ "ram": 1.2187556466321478e-05,
78
+ "gpu": 0.007894061870796776,
79
+ "total": 0.00906541584132417
80
+ },
81
+ {
82
+ "unit": "kWh",
83
+ "cpu": 0.001158468547829479,
84
+ "ram": 1.2180656157070825e-05,
85
+ "gpu": 0.007895276871771273,
86
+ "total": 0.009065926075757819
87
+ }
88
+ ]
89
+ },
90
+ "decode": {
91
+ "memory": null,
92
+ "latency": null,
93
+ "throughput": null,
94
+ "energy": {
95
+ "unit": "kWh",
96
+ "cpu": 0.0023089599231453676,
97
+ "ram": 2.4286529172090764e-05,
98
+ "gpu": 0.008326007660801339,
99
+ "total": 0.010659254113118792
100
+ },
101
+ "efficiency": {
102
+ "unit": "tokens/kWh",
103
+ "value": 844336.7523177181
104
+ },
105
+ "measures": [
106
+ {
107
+ "unit": "kWh",
108
+ "cpu": 0.002565571950888746,
109
+ "ram": 2.699196058750559e-05,
110
+ "gpu": 0.009337730247953147,
111
+ "total": 0.0119302941594294
112
+ },
113
+ {
114
+ "unit": "kWh",
115
+ "cpu": 0.0025611783814739383,
116
+ "ram": 2.693884378099775e-05,
117
+ "gpu": 0.009251288789915435,
118
+ "total": 0.011839406015170388
119
+ },
120
+ {
121
+ "unit": "kWh",
122
+ "cpu": 0.002568107257211522,
123
+ "ram": 2.7011729110698062e-05,
124
+ "gpu": 0.009275806865087333,
125
+ "total": 0.011870925851409572
126
+ },
127
+ {
128
+ "unit": "kWh",
129
+ "cpu": 0.002563648814367641,
130
+ "ram": 2.696435420839461e-05,
131
+ "gpu": 0.009252214901763978,
132
+ "total": 0.011842828070340011
133
+ },
134
+ {
135
+ "unit": "kWh",
136
+ "cpu": -0.0011585775511323134,
137
+ "ram": -1.2181541224197516e-05,
138
+ "gpu": -0.007896707706251505,
139
+ "total": -0.009067466798608016
140
+ },
141
+ {
142
+ "unit": "kWh",
143
+ "cpu": 0.0025677468097514873,
144
+ "ram": 2.700800696582317e-05,
145
+ "gpu": 0.009297187993297484,
146
+ "total": 0.0118919428100148
147
+ },
148
+ {
149
+ "unit": "kWh",
150
+ "cpu": 0.003725786039473475,
151
+ "ram": 3.918379202092902e-05,
152
+ "gpu": 0.017192133753699324,
153
+ "total": 0.02095710358519373
154
+ },
155
+ {
156
+ "unit": "kWh",
157
+ "cpu": 0.002572957691958191,
158
+ "ram": 2.7062633756664843e-05,
159
+ "gpu": 0.009310692726327119,
160
+ "total": 0.011910713052041944
161
+ },
162
+ {
163
+ "unit": "kWh",
164
+ "cpu": 0.0025626560205514494,
165
+ "ram": 2.6954228196698543e-05,
166
+ "gpu": 0.008999933588835773,
167
+ "total": 0.011589543837583899
168
+ },
169
+ {
170
+ "unit": "kWh",
171
+ "cpu": 0.002560523816909535,
172
+ "ram": 2.693128431739358e-05,
173
+ "gpu": 0.00923979544738529,
174
+ "total": 0.011827250548612195
175
+ }
176
+ ]
177
+ },
178
+ "per_token": {
179
+ "memory": null,
180
+ "latency": null,
181
+ "throughput": null,
182
+ "energy": null,
183
+ "efficiency": null,
184
+ "measures": null
185
+ },
186
+ "preprocess": {
187
+ "memory": null,
188
+ "latency": null,
189
+ "throughput": null,
190
+ "energy": {
191
+ "unit": "kWh",
192
+ "cpu": 1.2355282109961588e-05,
193
+ "ram": 9.613805157658694e-08,
194
+ "gpu": 2.0558905337253464e-05,
195
+ "total": 3.301032549879164e-05
196
+ },
197
+ "efficiency": {
198
+ "unit": "samples/kWh",
199
+ "value": 30293551.635430116
200
+ },
201
+ "measures": null
202
+ }
203
+ }
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/cli.log ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-12-03 17:28:18,232][launcher][INFO] - ََAllocating process launcher
2
+ [2024-12-03 17:28:18,232][process][INFO] - + Setting multiprocessing start method to spawn.
3
+ [2024-12-03 17:28:18,244][process][INFO] - + Launched benchmark in isolated process 697.
4
+ [PROC-0][2024-12-03 17:28:20,817][datasets][INFO] - PyTorch version 2.4.0 available.
5
+ [PROC-0][2024-12-03 17:28:21,803][backend][INFO] - َAllocating pytorch backend
6
+ [PROC-0][2024-12-03 17:28:21,803][backend][INFO] - + Setting random seed to 42
7
+ [PROC-0][2024-12-03 17:28:22,989][pytorch][INFO] - + Using AutoModel class AutoModelForCausalLM
8
+ [PROC-0][2024-12-03 17:28:22,989][pytorch][INFO] - + Creating backend temporary directory
9
+ [PROC-0][2024-12-03 17:28:22,989][pytorch][INFO] - + Loading model with random weights
10
+ [PROC-0][2024-12-03 17:28:22,990][pytorch][INFO] - + Creating no weights model
11
+ [PROC-0][2024-12-03 17:28:22,990][pytorch][INFO] - + Creating no weights model directory
12
+ [PROC-0][2024-12-03 17:28:22,990][pytorch][INFO] - + Creating no weights model state dict
13
+ [PROC-0][2024-12-03 17:28:23,013][pytorch][INFO] - + Saving no weights model safetensors
14
+ [PROC-0][2024-12-03 17:28:23,013][pytorch][INFO] - + Saving no weights model pretrained config
15
+ [PROC-0][2024-12-03 17:28:23,014][pytorch][INFO] - + Loading no weights AutoModel
16
+ [PROC-0][2024-12-03 17:28:23,014][pytorch][INFO] - + Loading model directly on device: cuda
17
+ [PROC-0][2024-12-03 17:28:23,293][pytorch][INFO] - + Turning on model's eval mode
18
+ [PROC-0][2024-12-03 17:28:23,299][benchmark][INFO] - Allocating energy_star benchmark
19
+ [PROC-0][2024-12-03 17:28:23,300][energy_star][INFO] - + Loading raw dataset
20
+ [PROC-0][2024-12-03 17:28:24,818][energy_star][INFO] - + Updating Text Generation kwargs with default values
21
+ [PROC-0][2024-12-03 17:28:24,818][energy_star][INFO] - + Initializing Text Generation report
22
+ [PROC-0][2024-12-03 17:28:24,818][energy][INFO] - + Tracking GPU energy on devices [0]
23
+ [PROC-0][2024-12-03 17:28:29,020][energy_star][INFO] - + Preprocessing dataset
24
+ [PROC-0][2024-12-03 17:28:30,067][energy][INFO] - + Saving codecarbon emission data to preprocess_codecarbon.json
25
+ [PROC-0][2024-12-03 17:28:30,067][energy_star][INFO] - + Preparing backend for Inference
26
+ [PROC-0][2024-12-03 17:28:30,067][energy_star][INFO] - + Initialising dataloader
27
+ [PROC-0][2024-12-03 17:28:30,068][energy_star][INFO] - + Warming up backend for Inference
28
+ [PROC-0][2024-12-03 17:28:31,721][energy_star][INFO] - + Additional warmup for Text Generation
29
+ [PROC-0][2024-12-03 17:28:31,998][energy_star][INFO] - + Running Text Generation energy tracking for 10 iterations
30
+ [PROC-0][2024-12-03 17:28:31,999][energy_star][INFO] - + Prefill iteration 1/10
31
+ [PROC-0][2024-12-03 17:30:09,885][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
32
+ [PROC-0][2024-12-03 17:30:09,885][energy_star][INFO] - + Prefill iteration 2/10
33
+ [PROC-0][2024-12-03 17:31:48,100][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
34
+ [PROC-0][2024-12-03 17:31:48,101][energy_star][INFO] - + Prefill iteration 3/10
35
+ [PROC-0][2024-12-03 17:33:26,209][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
36
+ [PROC-0][2024-12-03 17:33:26,210][energy_star][INFO] - + Prefill iteration 4/10
37
+ [PROC-0][2024-12-03 17:35:04,397][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
38
+ [PROC-0][2024-12-03 17:35:04,397][energy_star][INFO] - + Prefill iteration 5/10
39
+ [PROC-0][2024-12-03 17:36:42,536][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
40
+ [PROC-0][2024-12-03 17:36:42,536][energy_star][INFO] - + Prefill iteration 6/10
41
+ [PROC-0][2024-12-03 17:38:20,526][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
42
+ [PROC-0][2024-12-03 17:38:20,526][energy_star][INFO] - + Prefill iteration 7/10
43
+ [PROC-0][2024-12-03 17:39:57,836][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
44
+ [PROC-0][2024-12-03 17:39:57,837][energy_star][INFO] - + Prefill iteration 8/10
45
+ [PROC-0][2024-12-03 17:41:35,525][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
46
+ [PROC-0][2024-12-03 17:41:35,525][energy_star][INFO] - + Prefill iteration 9/10
47
+ [PROC-0][2024-12-03 17:43:13,714][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
48
+ [PROC-0][2024-12-03 17:43:13,714][energy_star][INFO] - + Prefill iteration 10/10
49
+ [PROC-0][2024-12-03 17:44:51,844][energy][INFO] - + Saving codecarbon emission data to prefill_codecarbon.json
50
+ [PROC-0][2024-12-03 17:44:51,844][energy_star][INFO] - + Decoding iteration 1/10
51
+ [PROC-0][2024-12-03 17:50:07,050][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
52
+ [PROC-0][2024-12-03 17:50:07,050][energy_star][INFO] - + Decoding iteration 2/10
53
+ [PROC-0][2024-12-03 17:55:22,212][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
54
+ [PROC-0][2024-12-03 17:55:22,212][energy_star][INFO] - + Decoding iteration 3/10
55
+ [PROC-0][2024-12-03 18:00:37,855][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
56
+ [PROC-0][2024-12-03 18:00:37,855][energy_star][INFO] - + Decoding iteration 4/10
57
+ [PROC-0][2024-12-03 18:05:53,198][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
58
+ [PROC-0][2024-12-03 18:05:53,199][energy_star][INFO] - + Decoding iteration 5/10
59
+ [PROC-0][2024-12-03 18:11:08,550][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
60
+ [PROC-0][2024-12-03 18:11:08,551][energy_star][INFO] - + Decoding iteration 6/10
61
+ [PROC-0][2024-12-03 18:16:24,043][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
62
+ [PROC-0][2024-12-03 18:16:24,044][energy_star][INFO] - + Decoding iteration 7/10
63
+ [PROC-0][2024-12-03 18:21:39,640][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
64
+ [PROC-0][2024-12-03 18:21:39,640][energy_star][INFO] - + Decoding iteration 8/10
65
+ [PROC-0][2024-12-03 18:26:55,273][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
66
+ [PROC-0][2024-12-03 18:26:55,274][energy_star][INFO] - + Decoding iteration 9/10
67
+ [PROC-0][2024-12-03 18:32:10,535][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
68
+ [PROC-0][2024-12-03 18:32:10,535][energy_star][INFO] - + Decoding iteration 10/10
69
+ [PROC-0][2024-12-03 18:37:25,556][energy][INFO] - + Saving codecarbon emission data to generate_codecarbon.json
70
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + prefill energy consumption:
71
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + CPU: 0.001042 (kWh)
72
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + GPU: 0.007093 (kWh)
73
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + RAM: 0.000011 (kWh)
74
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + total: 0.008145 (kWh)
75
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + prefill_iteration_1 energy consumption:
76
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + CPU: 0.001156 (kWh)
77
+ [PROC-0][2024-12-03 18:37:25,557][energy][INFO] - + GPU: 0.007838 (kWh)
78
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + RAM: 0.000012 (kWh)
79
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + total: 0.009006 (kWh)
80
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + prefill_iteration_2 energy consumption:
81
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + CPU: 0.001159 (kWh)
82
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + GPU: 0.007902 (kWh)
83
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + RAM: 0.000012 (kWh)
84
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + total: 0.009074 (kWh)
85
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + prefill_iteration_3 energy consumption:
86
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + CPU: 0.001158 (kWh)
87
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + GPU: 0.007889 (kWh)
88
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + RAM: 0.000012 (kWh)
89
+ [PROC-0][2024-12-03 18:37:25,558][energy][INFO] - + total: 0.009059 (kWh)
90
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + prefill_iteration_4 energy consumption:
91
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + CPU: 0.001159 (kWh)
92
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + GPU: 0.007895 (kWh)
93
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + RAM: 0.000012 (kWh)
94
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + total: 0.009067 (kWh)
95
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + prefill_iteration_5 energy consumption:
96
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + CPU: 0.001159 (kWh)
97
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + GPU: 0.007897 (kWh)
98
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + RAM: 0.000012 (kWh)
99
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + total: 0.009067 (kWh)
100
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + prefill_iteration_6 energy consumption:
101
+ [PROC-0][2024-12-03 18:37:25,559][energy][INFO] - + CPU: 0.001157 (kWh)
102
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + GPU: 0.007875 (kWh)
103
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + RAM: 0.000012 (kWh)
104
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + total: 0.009044 (kWh)
105
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + prefill_iteration_7 energy consumption:
106
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + CPU: 0.000000 (kWh)
107
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + GPU: 0.000000 (kWh)
108
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + RAM: 0.000000 (kWh)
109
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + total: 0.000000 (kWh)
110
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + prefill_iteration_8 energy consumption:
111
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + CPU: 0.001153 (kWh)
112
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + GPU: 0.007840 (kWh)
113
+ [PROC-0][2024-12-03 18:37:25,560][energy][INFO] - + RAM: 0.000012 (kWh)
114
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + total: 0.009005 (kWh)
115
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + prefill_iteration_9 energy consumption:
116
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + CPU: 0.001159 (kWh)
117
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + GPU: 0.007894 (kWh)
118
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + RAM: 0.000012 (kWh)
119
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + total: 0.009065 (kWh)
120
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + prefill_iteration_10 energy consumption:
121
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + CPU: 0.001158 (kWh)
122
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + GPU: 0.007895 (kWh)
123
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + RAM: 0.000012 (kWh)
124
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + total: 0.009066 (kWh)
125
+ [PROC-0][2024-12-03 18:37:25,561][energy][INFO] - + decode energy consumption:
126
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + CPU: 0.002309 (kWh)
127
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + GPU: 0.008326 (kWh)
128
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + RAM: 0.000024 (kWh)
129
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + total: 0.010659 (kWh)
130
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + decode_iteration_1 energy consumption:
131
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + CPU: 0.002566 (kWh)
132
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + GPU: 0.009338 (kWh)
133
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + RAM: 0.000027 (kWh)
134
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + total: 0.011930 (kWh)
135
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + decode_iteration_2 energy consumption:
136
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + CPU: 0.002561 (kWh)
137
+ [PROC-0][2024-12-03 18:37:25,562][energy][INFO] - + GPU: 0.009251 (kWh)
138
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + RAM: 0.000027 (kWh)
139
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + total: 0.011839 (kWh)
140
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + decode_iteration_3 energy consumption:
141
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + CPU: 0.002568 (kWh)
142
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + GPU: 0.009276 (kWh)
143
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + RAM: 0.000027 (kWh)
144
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + total: 0.011871 (kWh)
145
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + decode_iteration_4 energy consumption:
146
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + CPU: 0.002564 (kWh)
147
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + GPU: 0.009252 (kWh)
148
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + RAM: 0.000027 (kWh)
149
+ [PROC-0][2024-12-03 18:37:25,563][energy][INFO] - + total: 0.011843 (kWh)
150
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + decode_iteration_5 energy consumption:
151
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + CPU: -0.001159 (kWh)
152
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + GPU: -0.007897 (kWh)
153
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + RAM: -0.000012 (kWh)
154
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + total: -0.009067 (kWh)
155
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + decode_iteration_6 energy consumption:
156
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + CPU: 0.002568 (kWh)
157
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + GPU: 0.009297 (kWh)
158
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + RAM: 0.000027 (kWh)
159
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + total: 0.011892 (kWh)
160
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + decode_iteration_7 energy consumption:
161
+ [PROC-0][2024-12-03 18:37:25,564][energy][INFO] - + CPU: 0.003726 (kWh)
162
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + GPU: 0.017192 (kWh)
163
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + RAM: 0.000039 (kWh)
164
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + total: 0.020957 (kWh)
165
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + decode_iteration_8 energy consumption:
166
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + CPU: 0.002573 (kWh)
167
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + GPU: 0.009311 (kWh)
168
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + RAM: 0.000027 (kWh)
169
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + total: 0.011911 (kWh)
170
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + decode_iteration_9 energy consumption:
171
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + CPU: 0.002563 (kWh)
172
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + GPU: 0.009000 (kWh)
173
+ [PROC-0][2024-12-03 18:37:25,565][energy][INFO] - + RAM: 0.000027 (kWh)
174
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + total: 0.011590 (kWh)
175
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + decode_iteration_10 energy consumption:
176
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + CPU: 0.002561 (kWh)
177
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + GPU: 0.009240 (kWh)
178
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + RAM: 0.000027 (kWh)
179
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + total: 0.011827 (kWh)
180
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + preprocess energy consumption:
181
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + CPU: 0.000012 (kWh)
182
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + GPU: 0.000021 (kWh)
183
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + RAM: 0.000000 (kWh)
184
+ [PROC-0][2024-12-03 18:37:25,566][energy][INFO] - + total: 0.000033 (kWh)
185
+ [PROC-0][2024-12-03 18:37:25,567][energy][INFO] - + prefill energy efficiency: 45080238.155766 (tokens/kWh)
186
+ [PROC-0][2024-12-03 18:37:25,567][energy][INFO] - + decode energy efficiency: 844336.752318 (tokens/kWh)
187
+ [PROC-0][2024-12-03 18:37:25,567][energy][INFO] - + preprocess energy efficiency: 30293551.635430 (samples/kWh)
188
+ [2024-12-03 18:37:26,296][datasets][INFO] - PyTorch version 2.4.0 available.
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/error.log ADDED
The diff for this file is too large to render. See raw diff
 
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/experiment_config.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_name": "text_generation",
3
+ "backend": {
4
+ "name": "pytorch",
5
+ "version": "2.4.0",
6
+ "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
7
+ "task": "text-generation",
8
+ "model": "Qwen/Qwen2.5-1.5B-Instruct",
9
+ "processor": "Qwen/Qwen2.5-1.5B-Instruct",
10
+ "library": "transformers",
11
+ "device": "cuda",
12
+ "device_ids": "0",
13
+ "seed": 42,
14
+ "inter_op_num_threads": null,
15
+ "intra_op_num_threads": null,
16
+ "hub_kwargs": {
17
+ "revision": "main",
18
+ "force_download": false,
19
+ "local_files_only": false,
20
+ "trust_remote_code": true
21
+ },
22
+ "no_weights": true,
23
+ "device_map": null,
24
+ "torch_dtype": null,
25
+ "amp_autocast": false,
26
+ "amp_dtype": null,
27
+ "eval_mode": true,
28
+ "to_bettertransformer": false,
29
+ "low_cpu_mem_usage": null,
30
+ "attn_implementation": null,
31
+ "cache_implementation": null,
32
+ "torch_compile": false,
33
+ "torch_compile_config": {},
34
+ "quantization_scheme": null,
35
+ "quantization_config": {},
36
+ "deepspeed_inference": false,
37
+ "deepspeed_inference_config": {},
38
+ "peft_type": null,
39
+ "peft_config": {}
40
+ },
41
+ "launcher": {
42
+ "name": "process",
43
+ "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
44
+ "device_isolation": false,
45
+ "device_isolation_action": "warn",
46
+ "start_method": "spawn"
47
+ },
48
+ "benchmark": {
49
+ "name": "energy_star",
50
+ "_target_": "optimum_benchmark.benchmarks.energy_star.benchmark.EnergyStarBenchmark",
51
+ "dataset_name": "EnergyStarAI/text_generation",
52
+ "dataset_config": "",
53
+ "dataset_split": "train",
54
+ "num_samples": 1000,
55
+ "input_shapes": {
56
+ "batch_size": 1
57
+ },
58
+ "text_column_name": "text",
59
+ "truncation": true,
60
+ "max_length": -1,
61
+ "dataset_prefix1": "",
62
+ "dataset_prefix2": "",
63
+ "t5_task": "",
64
+ "image_column_name": "image",
65
+ "resize": false,
66
+ "question_column_name": "question",
67
+ "context_column_name": "context",
68
+ "sentence1_column_name": "sentence1",
69
+ "sentence2_column_name": "sentence2",
70
+ "audio_column_name": "audio",
71
+ "iterations": 10,
72
+ "warmup_runs": 10,
73
+ "energy": true,
74
+ "forward_kwargs": {},
75
+ "generate_kwargs": {
76
+ "max_new_tokens": 10,
77
+ "min_new_tokens": 10
78
+ },
79
+ "call_kwargs": {}
80
+ },
81
+ "environment": {
82
+ "cpu": " AMD EPYC 7R32",
83
+ "cpu_count": 48,
84
+ "cpu_ram_mb": 200472.73984,
85
+ "system": "Linux",
86
+ "machine": "x86_64",
87
+ "platform": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
88
+ "processor": "x86_64",
89
+ "python_version": "3.9.20",
90
+ "gpu": [
91
+ "NVIDIA A10G"
92
+ ],
93
+ "gpu_count": 1,
94
+ "gpu_vram_mb": 24146608128,
95
+ "optimum_benchmark_version": "0.2.0",
96
+ "optimum_benchmark_commit": null,
97
+ "transformers_version": "4.44.0",
98
+ "transformers_commit": null,
99
+ "accelerate_version": "0.33.0",
100
+ "accelerate_commit": null,
101
+ "diffusers_version": "0.30.0",
102
+ "diffusers_commit": null,
103
+ "optimum_version": null,
104
+ "optimum_commit": null,
105
+ "timm_version": null,
106
+ "timm_commit": null,
107
+ "peft_version": null,
108
+ "peft_commit": null
109
+ }
110
+ }
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/generate_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T18:37:25",
3
+ "project_name": "codecarbon",
4
+ "run_id": "7a211d4e-0f2e-460c-a239-545d6b7c407d",
5
+ "duration": -1732037695.2965999,
6
+ "emissions": 0.007712389755398175,
7
+ "emissions_rate": 2.4482330803332173e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 195.82009333318672,
10
+ "ram_power": 0.4469733238220215,
11
+ "cpu_energy": 0.003718992364739014,
12
+ "gpu_energy": 0.017135072319156563,
13
+ "ram_energy": 3.9111940474464404e-05,
14
+ "energy_consumed": 0.020893176624370013,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/prefill_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:44:51",
3
+ "project_name": "codecarbon",
4
+ "run_id": "7a211d4e-0f2e-460c-a239-545d6b7c407d",
5
+ "duration": -1732037912.1883662,
6
+ "emissions": 0.0033465449819783007,
7
+ "emissions_rate": 3.410427307789054e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 289.6576572407499,
10
+ "ram_power": 0.4468803405761719,
11
+ "cpu_energy": 0.001158468547829479,
12
+ "gpu_energy": 0.007895276871771273,
13
+ "ram_energy": 1.2180656157070825e-05,
14
+ "energy_consumed": 0.009065926075757819,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }
text_generation/Qwen/Qwen2.5-1.5B-Instruct/2024-12-03-17-28-15/preprocess_codecarbon.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "timestamp": "2024-12-03T17:28:30",
3
+ "project_name": "codecarbon",
4
+ "run_id": "7a211d4e-0f2e-460c-a239-545d6b7c407d",
5
+ "duration": -1732038009.2707622,
6
+ "emissions": 1.2185245966967284e-05,
7
+ "emissions_rate": 1.166600603844684e-05,
8
+ "cpu_power": 42.5,
9
+ "gpu_power": 70.87527803355864,
10
+ "ram_power": 0.3316812515258789,
11
+ "cpu_energy": 1.2355282109961588e-05,
12
+ "gpu_energy": 2.0558905337253464e-05,
13
+ "ram_energy": 9.613805157658694e-08,
14
+ "energy_consumed": 3.301032549879164e-05,
15
+ "country_name": "United States",
16
+ "country_iso_code": "USA",
17
+ "region": "virginia",
18
+ "cloud_provider": "",
19
+ "cloud_region": "",
20
+ "os": "Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35",
21
+ "python_version": "3.9.20",
22
+ "codecarbon_version": "2.5.1",
23
+ "cpu_count": 48,
24
+ "cpu_model": "AMD EPYC 7R32",
25
+ "gpu_count": 1,
26
+ "gpu_model": "1 x NVIDIA A10G",
27
+ "longitude": -77.4903,
28
+ "latitude": 39.0469,
29
+ "ram_total_size": 186.7047882080078,
30
+ "tracking_mode": "process",
31
+ "on_cloud": "N",
32
+ "pue": 1.0
33
+ }