# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple sentences Dataset - contains 90 mins of speech data""" import csv import json import os import datasets _CITATION = """\ @misc{simpledata_1, title = {Whisper model for tamil-to-eng translation}, publisher = {Achitha}, year = {2022}, } @misc{simpledata_2, title = {Fine-tuning whisper model}, publisher = {Achitha}, year = {2022}, } """ _DESCRIPTION = """\ The data contains roughly one and half hours of audio and trasncripts in Tamil language. """ _HOMEPAGE = "" _LICENSE = "MIT" _METADATA_URLS = { "train": "data/train.jsonl", "test": "data/test.jsonl" } _URLS = { "train": "data/train.tar.gz", "test": "data/test.tar.gz", } class simple_data(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "audio": datasets.Audio(sampling_rate=16_000), "path": datasets.Value("string"), "sentence": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("sentence", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): metadata_paths = dl_manager.download(_METADATA_URLS) train_archive = dl_manager.download(_URLS["train"]) test_archive = dl_manager.download(_URLS["test"]) local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None test_archive = dl_manager.download(_URLS["test"]) train_dir = "train" test_dir = "test" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_path": metadata_paths["train"], "local_extracted_archive": local_extracted_train_archive, "path_to_clips": train_dir, "audio_files": dl_manager.iter_archive(train_archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "metadata_path": metadata_paths["test"], "local_extracted_archive": local_extracted_test_archive, "path_to_clips": test_dir, "audio_files": dl_manager.iter_archive(test_archive), }, ), ] def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files): """Yields examples as (key, example) tuples.""" examples = {} with open(metadata_path, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) examples[data["path"]] = data inside_clips_dir = False id_ = 0 for path, f in audio_files: if path.startswith(path_to_clips): inside_clips_dir = True if path in examples: result = examples[path] path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path result["audio"] = {"path": path, "bytes": f.read()} result["path"] = path yield id_, result id_ += 1 elif inside_clips_dir: break