Datasets:
Tasks:
Translation
Size:
1K - 10K
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Simple sentences Dataset - contains 90 mins of speech data""" | |
import csv | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@misc{simpledata_1, | |
title = {Whisper model for tamil-to-eng translation}, | |
publisher = {Achitha}, | |
year = {2022}, | |
} | |
@misc{simpledata_2, | |
title = {Fine-tuning whisper model}, | |
publisher = {Achitha}, | |
year = {2022}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
The data contains roughly one and half hours of audio and transcripts in Tamil language. | |
""" | |
_HOMEPAGE = "" | |
_LICENSE = "MIT" | |
_METADATA_URLS = { | |
"train": "data/train.jsonl", | |
"test": "data/test.jsonl" | |
} | |
_URLS = { | |
"train": "data/train.tar.gz", | |
"test": "data/test.tar.gz", | |
} | |
class simple_data(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"path": datasets.Value("string"), | |
"sentence": datasets.Value("string"), | |
"length": datasets.Value("float") | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=("sentence", "label"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
metadata_paths = dl_manager.download(_METADATA_URLS) | |
train_archive = dl_manager.download(_URLS["train"]) | |
test_archive = dl_manager.download(_URLS["test"]) | |
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None | |
local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None | |
test_archive = dl_manager.download(_URLS["test"]) | |
train_dir = "train" | |
test_dir = "test" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"metadata_path": metadata_paths["train"], | |
"local_extracted_archive": local_extracted_train_archive, | |
"path_to_clips": train_dir, | |
"audio_files": dl_manager.iter_archive(train_archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"metadata_path": metadata_paths["test"], | |
"local_extracted_archive": local_extracted_test_archive, | |
"path_to_clips": test_dir, | |
"audio_files": dl_manager.iter_archive(test_archive), | |
}, | |
), | |
] | |
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files): | |
"""Yields examples as (key, example) tuples.""" | |
examples = {} | |
with open(metadata_path, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
examples[data["path"]] = data | |
inside_clips_dir = False | |
id_ = 0 | |
for path, f in audio_files: | |
if path.startswith(path_to_clips): | |
inside_clips_dir = True | |
if path in examples: | |
result = examples[path] | |
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path | |
result["audio"] = {"path": path, "bytes": f.read()} | |
result["path"] = path | |
yield id_, result | |
id_ += 1 | |
elif inside_clips_dir: | |
break |