AdaptLLM commited on
Commit
e308450
•
1 Parent(s): 4199b27

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -0
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ configs:
3
+ - config_name: ConvFinQA
4
+ data_files:
5
+ - split: train
6
+ path: train_turn.json
7
+ - split: validation
8
+ path: dev_turn.json
9
+ task_categories:
10
+ - text-classification
11
+ - question-answering
12
+ - zero-shot-classification
13
+ language:
14
+ - en
15
+ tags:
16
+ - medical
17
+ - chemistry
18
+ - biology
19
+ ---
20
+
21
+ # Domain Adaptation of Large Language Models
22
+ This repo contains the **ChemProt dataset** used in our **ICLR 2024** paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).
23
+
24
+ We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
25
+
26
+ ### 🤗 We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! 🤗
27
+
28
+ **************************** **Updates** ****************************
29
+ * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
30
+ * 2024/1/16: 🎉 Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!🎉
31
+ * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.
32
+ * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B.
33
+ * 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B.
34
+
35
+
36
+ ## Domain-Specific LLaMA-1
37
+ ### LLaMA-1-7B
38
+ In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:
39
+
40
+ <p align='center'>
41
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
42
+ </p>
43
+
44
+ ### LLaMA-1-13B
45
+ Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).
46
+
47
+ ## Domain-Specific LLaMA-2-Chat
48
+ Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
49
+
50
+ ## Domain-Specific Tasks
51
+
52
+ ### Pre-templatized/Formatted Testing Splits
53
+ To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
54
+
55
+ **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
56
+
57
+ ### Raw Datasets
58
+ We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages:
59
+ - [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt)
60
+ - [RCT](https://huggingface.co/datasets/AdaptLLM/RCT)
61
+ - [ConvFinQA](https://huggingface.co/datasets/AdaptLLM/ConvFinQA)
62
+ - [FiQA_SA](https://huggingface.co/datasets/AdaptLLM/FiQA_SA)
63
+ - [Headline](https://huggingface.co/datasets/AdaptLLM/Headline)
64
+ - [NER](https://huggingface.co/datasets/AdaptLLM/NER)
65
+
66
+ The other datasets used in our paper have already been available in huggingface, so you can directly load them with the following code
67
+ ```python
68
+ from datasets import load_dataset
69
+
70
+ # MQP:
71
+ dataset = load_dataset('medical_questions_pairs')
72
+
73
+ # PubmedQA:
74
+ dataset = load_dataset('bigbio/pubmed_qa')
75
+
76
+ # SCOTUS
77
+ dataset = load_dataset("lex_glue", 'scotus')
78
+
79
+ # CaseHOLD
80
+ dataset = load_dataset("lex_glue", 'case_hold')
81
+
82
+ # UNFAIR-ToS
83
+ dataset = load_dataset("lex_glue", 'unfair_tos')
84
+ ```
85
+
86
+ ## Citation
87
+ If you find our work helpful, please cite us:
88
+ ```bibtex
89
+ @inproceedings{
90
+ cheng2024adapting,
91
+ title={Adapting Large Language Models via Reading Comprehension},
92
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
93
+ booktitle={The Twelfth International Conference on Learning Representations},
94
+ year={2024},
95
+ url={https://openreview.net/forum?id=y886UXPEZ0}
96
+ }
97
+ ```
98
+
99
+ and the original dataset:
100
+ ```bibtex
101
+ @inproceedings{ConvFinQA,
102
+ author = {Zhiyu Chen and
103
+ Shiyang Li and
104
+ Charese Smiley and
105
+ Zhiqiang Ma and
106
+ Sameena Shah and
107
+ William Yang Wang},
108
+ title = {ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
109
+ Finance Question Answering},
110
+ booktitle = {{EMNLP}},
111
+ pages = {6279--6292},
112
+ publisher = {Association for Computational Linguistics},
113
+ year = {2022}
114
+ }
115
+ ```