File size: 38,362 Bytes
171d757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
"""
******************** This version of NEBULA is a simplified working demo **********************
NEBULA.py: Dynamic Quantum-Inspired Neural Network System
**Francisco Angulo de Lafuente**
**July 16, 2024**
https://github.com/Agnuxo1
**************************************** NEBULA FEATURES ****************************************
This program simulates a sophisticated artificial intelligence system
inspired by quantum computing principles and biological neural networks.
It features:
- A dynamic, continuous 3D space where neurons interact based on
light-based attraction, mimicking a nebula.
- Virtual neurons and qubits for scalability.
- Holographic encoding for efficient state representation using CNNs.
- Parallel processing using Ray for accelerated computation.
- Genetic optimization (DEAP) for learning and adaptation.
The system is designed to process information, learn from interactions,
and answer questions based on its internal representations.
This version (NEBULA) integrates the improved holographic system
using CNNs for encoding and decoding.
NEBULA: Neural Entanglement-Based Unified Learning Architecture
NEBULA is a dynamic and innovative artificial intelligence system designed
to emulate quantum computing principles and biological neural networks.
It features a unique combination of continuous space, light-based attraction,
virtual neurons and qubits, holographic encoding, and other advanced features
that enable it to adapt, learn, and solve complex problems in various domains such
as text, image, and numerical data processing.
**************************************** NEBULA DEFINITION ****************************************
N: Neural networks - The system is inspired by biological neural networks, enabling it to learn from data, adapt to new information, and solve complex tasks.
E: Entanglement-based - NEBULA leverages the principles of quantum entanglement to create complex relationships between virtual neurons and qubits, enhancing the system's efficiency and learning capabilities.
B: Biological - The system simulates organic structures, such as a nebula, to create an environment where virtual neurons interact in a more natural and dynamic way.
U: Unified Learning - NEBULA integrates various AI techniques, such as genetic optimization, language model training, and parallel processing, to create a comprehensive learning architecture.
L: Light-based attraction - The system uses light-based attraction between virtual neurons to simulate gravitational forces and facilitate dynamic clustering, improving the efficiency of neural interactions.
A: Adaptive - NEBULA is designed to adapt to new information and optimize its structure over time, ensuring continuous learning and improvement.
"""
import numpy as np
import cupy as cp
import ray
import pennylane as qml
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast, GradScaler
from sklearn.metrics.pairwise import cosine_similarity
import trimesh
import matplotlib.pyplot as plt
import os
import time
import uuid
import logging
from typing import List, Dict, Tuple, Any, Optional, Union
from deap import base, creator, tools, algorithms
import random
from tqdm import tqdm
import signal
import functools
# Global variables
EPOCH = 5
DIM = 1024 # Reduced dimension for CNN compatibility
SECTOR_SIZE = 32
NEURONS_PER_SECTOR = 50000
MAX_SECTORS = 100 # Maximum number of sectors, adjustable for scalability
TRAIN_EPOCH = 5 # Global counter for training epochs
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Predefined questions and answers about the Solar System
solar_system_qa = {
"Planets": [
{"question": "Is Mars bigger than Earth?", "answer": "No"},
{"question": "Does Jupiter have more moons than any other planet in our solar system?", "answer": "Yes"},
{"question": "Is Venus the hottest planet in our solar system?", "answer": "Yes"},
{"question": "Is Uranus known for its prominent rings?", "answer": "No"},
{"question": "Is Mercury the closest planet to the Sun?", "answer": "Yes"}
],
"Earth": [
{"question": "Is Earth the largest planet in the solar system?", "answer": "No"},
{"question": "Does Earth have one moon?", "answer": "Yes"},
{"question": "Is Earth mostly covered in water?", "answer": "Yes"},
{"question": "Is Earth further from the sun than Mars?", "answer": "No"},
{"question": "Does Earth have rings?", "answer": "No"}
]
}
def timeout(seconds):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
def handler(signum, frame):
raise TimeoutError(f"Function {func.__name__} timed out after {seconds} seconds")
signal.signal(signal.SIGALRM, handler)
signal.alarm(seconds)
try:
result = func(*args, **kwargs)
finally:
signal.alarm(0)
return result
return wrapper
return decorator
class AmplitudeCNN(nn.Module):
"""
CNN for decoding the amplitude component of the hologram.
"""
def __init__(self):
super(AmplitudeCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.fc = nn.Linear(64 * 8 * 8, DIM)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = self.dropout(x)
return self.fc(x)
class PhaseCNN(nn.Module):
"""
CNN for decoding the phase component of the hologram.
"""
def __init__(self):
super(PhaseCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.fc = nn.Linear(64 * 8 * 8, DIM)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = self.dropout(x)
return self.fc(x)
class HologramCodec:
"""
Encodes and decodes data using a holographic representation.
This codec uses Fast Fourier Transforms (FFT) for encoding and
inverse FFT for decoding, providing an efficient way to
represent and compress the network's state. It also incorporates
CNNs for amplitude and phase decoding and utilizes mixed precision
training for potential speed and memory benefits.
"""
def __init__(self, dim: int = DIM):
"""
Initializes the HologramCodec.
Args:
dim (int): The dimensionality of the holographic representation.
Defaults to the global DIM value.
"""
self.dim = dim
self.amplitude_cnn = AmplitudeCNN().to('cuda')
self.phase_cnn = PhaseCNN().to('cuda')
self.scaler = GradScaler()
def encode(self, data: np.ndarray, sector_index: int) -> torch.Tensor:
"""
Encodes data into a holographic representation using a 3D FFT.
"""
gpu_data = cp.asarray(data)
gpu_data = cp.fft.fftn(gpu_data)
hologram = torch.as_tensor(gpu_data, dtype=torch.complex64).to('cuda')
return hologram
def decode(self, hologram: torch.Tensor, sector_id: str) -> np.ndarray:
"""
Decodes a holographic representation back to the original data using CNNs and inverse 3D FFT.
Args:
hologram (torch.Tensor): The encoded holographic data.
sector_id (str): The ID of the sector being decoded.
Returns:
np.ndarray: The decoded data in its original format.
"""
logger.info(f"Decoding sector {sector_id}, data type: {type(hologram)}, shape: {hologram.shape}")
with autocast():
amplitude = self.amplitude_cnn(hologram[None, None, :, :, :])
phase = self.phase_cnn(hologram[None, None, :, :, :])
complex_data = amplitude * torch.exp(1j * phase)
gpu_data = cp.fft.ifftn(cp.asarray(complex_data.cpu()), axes=(0, 1, 2))
decoded_data = cp.asnumpy(gpu_data) / (self.dim ** 3)
# Reshape data back to its original form
decoded_data = decoded_data.flatten()
logger.info(f"Decoded data type: {type(decoded_data)}, shape: {decoded_data.shape}")
return decoded_data
class QuantumNeuron:
"""
A quantum-inspired neuron using a parameterized quantum circuit.
This neuron processes information using a quantum circuit simulated
with PennyLane. The circuit's parameters (weights) are adjustable,
allowing the neuron to learn and adapt.
"""
def __init__(self, n_qubits: int = 4):
"""
Initializes the QuantumNeuron.
Args:
n_qubits (int): The number of qubits used in the quantum circuit.
Defaults to 4.
"""
self.n_qubits = n_qubits
self.dev = qml.device("default.qubit", wires=n_qubits) # Create a PennyLane quantum device
# Define the quantum circuit
@qml.qnode(self.dev)
def quantum_circuit(inputs, weights):
for i in range(n_qubits):
qml.RY(inputs[i], wires=i) # Apply RY gate with input data
for i in range(n_qubits):
qml.RX(weights[i], wires=i) # Apply RX and RZ gates with weights
qml.RZ(weights[i + n_qubits], wires=i)
for i in range(n_qubits - 1):
qml.CNOT(wires=[i, i + 1]) # Apply CNOT gates for entanglement
qml.CRZ(weights[-1], wires=[0, n_qubits-1]) # Apply CRZ gate
return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)] # Measure in Z basis
self.quantum_circuit = quantum_circuit
self.weights = np.random.randn(2 * n_qubits + 1) # Initialize weights randomly
def forward(self, inputs: np.ndarray) -> np.ndarray:
"""
Performs a forward pass through the quantum circuit.
Args:
inputs (np.ndarray): The input data to be processed by the neuron.
Returns:
np.ndarray: The output of the quantum circuit, representing
the neuron's activation.
"""
return np.array(self.quantum_circuit(inputs, self.weights)) # Execute the circuit
class Neuron:
"""
A neuron in the Nebula system combining classical and quantum properties.
Each neuron has a 3D position within the NebulaSpace, a QuantumNeuron
for processing information, and connections to other neurons.
"""
def __init__(self, position: np.ndarray):
"""
Initializes the Neuron.
Args:
position (np.ndarray): The 3D coordinates of the neuron in the NebulaSpace.
"""
self.position = position
self.quantum_neuron = QuantumNeuron() # Assign a QuantumNeuron
self.luminosity = np.random.rand() # Initialize luminosity randomly
self.connections = [] # List to store connections with other neurons
def activate(self, inputs: np.ndarray):
"""
Activates the neuron with the given input.
Args:
inputs (np.ndarray): The input data to be processed by the neuron.
Returns:
np.ndarray: The output of the neuron's QuantumNeuron,
representing its activation.
"""
return self.quantum_neuron.forward(inputs) # Forward pass through the QuantumNeuron
def process(self, inputs: np.ndarray) -> np.ndarray:
"""
Processes input data through the neuron's QuantumNeuron.
Args:
inputs (np.ndarray): The input data to be processed.
Returns:
np.ndarray: The processed output from the QuantumNeuron.
"""
return self.activate(inputs) # Activation is synonymous with processing here
class NebulaSector:
"""
A sector within the Nebula system containing multiple neurons.
Neurons within a sector interact with each other based on their
proximity and luminosity. The sector manages these interactions and
provides a way to organize neurons within the NebulaSpace.
"""
def __init__(self, n_neurons: int = NEURONS_PER_SECTOR):
"""
Initializes the NebulaSector.
Args:
n_neurons (int): The number of neurons to create within this sector.
Defaults to the global NEURONS_PER_SECTOR value.
"""
self.id = str(uuid.uuid4()) # Unique ID for the sector
self.neurons = [Neuron(np.random.randn(3)) for _ in range(n_neurons)] # Create neurons
self.positions = cp.array([n.position for n in self.neurons], dtype=cp.float32) # Store positions on GPU
self.luminosities = cp.array([n.luminosity for n in self.neurons], dtype=cp.float32) # Store luminosities on GPU
self.interactions = cp.zeros(n_neurons, dtype=cp.float32) # Initialize interaction matrix
self.last_modified = time.time() # Timestamp for tracking modifications
def update_interactions(self):
"""
Update the interactions between neurons within this sector.
"""
n = len(self.neurons)
for i in range(n):
for j in range(n):
if i != j: # Avoid self-interaction
dx = self.positions[i, 0] - self.positions[j, 0]
dy = self.positions[i, 1] - self.positions[j, 1]
dz = self.positions[i, 2] - self.positions[j, 2]
dist_sq = dx**2 + dy**2 + dz**2 + 1e-6
self.interactions[i] += self.luminosities[j] / dist_sq
self.last_modified = time.time()
def get_state(self) -> np.ndarray:
"""
Retrieves the current state of the sector.
Returns:
np.ndarray: A flattened array representing the sector's state,
including neuron positions, luminosities, and interactions.
"""
return np.concatenate((
cp.asnumpy(self.positions).flatten(), # Flatten and move data from GPU to CPU
cp.asnumpy(self.luminosities),
cp.asnumpy(self.interactions)
))
def set_state(self, state: np.ndarray):
"""
Sets the state of the sector.
Args:
state (np.ndarray): A flattened array representing the new state of the sector.
"""
n_neurons = len(self.neurons)
self.positions = cp.array(state[:3 * n_neurons].reshape((n_neurons, 3))) # Update positions
self.luminosities = cp.array(state[3 * n_neurons:4 * n_neurons]) # Update luminosities
self.interactions = cp.array(state[4 * n_neurons:]) # Update interactions
self.last_modified = time.time() # Update modification timestamp
class NebulaSpace:
"""
The 3D space where Nebula sectors exist and interact.
This class manages the creation and tracking of sectors, providing
a spatial organization for the Nebula system.
"""
def __init__(self, sector_size: int = SECTOR_SIZE):
"""
Initializes the NebulaSpace.
Args:
sector_size (int): The size of each sector along each dimension.
Defaults to the global SECTOR_SIZE value.
"""
self.sectors = {} # Dictionary to store sectors by their unique ID
self.sector_map = {} # Map sector coordinates to sector IDs
self.sector_size = sector_size
def get_or_create_sector(self, position: np.ndarray) -> NebulaSector:
"""
Retrieves a sector at a given position, creating it if it doesn't exist.
Args:
position (np.ndarray): The 3D coordinates to locate the sector.
Returns:
NebulaSector: The sector at the specified position.
"""
sector_coords = tuple(int(p // self.sector_size) for p in position) # Calculate sector coordinates
if sector_coords not in self.sector_map:
new_sector = NebulaSector() # Create a new sector if needed
self.sectors[new_sector.id] = new_sector
self.sector_map[sector_coords] = new_sector.id
return self.sectors[self.sector_map[sector_coords]]
def update_all_sectors(self):
"""
Triggers the update of interactions in all sectors within the NebulaSpace.
"""
for sector in self.sectors.values():
sector.update_interactions()
class NebulaSystem:
def __init__(self):
self.space = NebulaSpace()
self.hologram_codec = HologramCodec()
self.cache = {}
self.memory = []
def process_input(self, input_data: str) -> np.ndarray:
"""
Process input data and generate embeddings (temporarily disabled NLP).
Args:
input_data (str): The input data to be processed.
Returns:
np.ndarray: Randomly generated embeddings.
"""
# Placeholder for embedding generation (NLP disabled)
embeddings = np.random.randn(DIM)
return embeddings
def activate_neurons(self, embeddings: np.ndarray):
for sector in self.space.sectors.values():
for i, neuron in enumerate(sector.neurons):
neuron.activate(embeddings) # Activate with the generated embedding
sector.update_interactions()
def process_data(self, data: Dict[str, List[Dict[str, str]]]):
embeddings = []
for category, qa_pairs in data.items():
for pair in qa_pairs:
question, answer = pair['question'], pair['answer']
embeddings.append(np.random.randn(DIM))
self.memory.append((question, answer))
if not embeddings:
logger.warning("No data to process. No neurons will be created.")
return
self.activate_neurons(np.array(embeddings))
# Ensure at least one sector is created
if not self.space.sectors:
self.space.get_or_create_sector(np.array([0, 0, 0]))
def save_state(self) -> Dict[str, torch.Tensor]:
state_data = {}
for sector_id, sector in self.space.sectors.items():
sector_state = sector.get_state()
# Convierte el UUID a entero
sector_index = uuid.UUID(sector_id).int
encoded_state = self.hologram_codec.encode(sector_state, sector_index)
state_data[sector_id] = encoded_state
return state_data
def load_state(self, state_data: Dict[str, torch.Tensor]):
for sector_id, encoded_state in state_data.items():
# Convierte el UUID a entero
sector_index = uuid.UUID(sector_id).int
sector_state = self.hologram_codec.decode(encoded_state, sector_index)
if sector_id not in self.space.sectors:
self.space.sectors[sector_id] = NebulaSector()
self.space.sectors[sector_id].set_state(sector_state)
def query_nearest_neurons(self, query_embedding: np.ndarray, k: int = 9) -> List[Neuron]:
"""
Finds the k-nearest neurons to a given query embedding.
Args:
query_embedding (np.ndarray): The query embedding to compare against neurons.
k (int): The number of nearest neurons to return. Defaults to 9.
Returns:
List[Neuron]: A list of the k-nearest neurons.
"""
logger.info(f"Querying nearest neurons with embedding shape: {query_embedding.shape}")
query_embedding = query_embedding.flatten()
all_neurons = []
all_embeddings = []
for sector in self.space.sectors.values():
all_neurons.extend(sector.neurons)
all_embeddings.extend([n.quantum_neuron.weights.flatten() for n in sector.neurons])
if not all_embeddings:
logger.error("No neurons found in the system.")
return []
neuron_embeddings = np.array(all_embeddings)
logger.info(f"Neuron embeddings shape: {neuron_embeddings.shape}")
query_embedding = query_embedding[:neuron_embeddings.shape[1]].reshape(1, -1)
neuron_embeddings = neuron_embeddings.reshape(neuron_embeddings.shape[0], -1)
similarities = cosine_similarity(query_embedding, neuron_embeddings)
nearest_indices = np.argsort(similarities[0])[-k:][::-1]
return [all_neurons[i] for i in nearest_indices]
def answer_question(self, question: Union[str, np.ndarray]) -> str:
"""
Answer a given question based on the current state of the Nebula system.
Args:
question (Union[str, np.ndarray]): The question to be answered, either as a string or a pre-computed embedding.
Returns:
str: The answer to the question, either "Yes" or "No".
"""
try:
if isinstance(question, str):
# Genera un embedding de 9 dimensiones
question_embedding = np.random.randn(9)
logger.info(f"Creating embedding for question: {question}")
question_embedding = np.random.randn(DIM)
elif isinstance(question, np.ndarray):
question_embedding = question
else:
raise ValueError("Question must be either a string or a numpy array")
nearest_neurons = self.query_nearest_neurons(question_embedding)
if not nearest_neurons:
logger.warning("No neurons found to answer the question.")
return "Unable to answer due to lack of initialized neurons."
activations = []
for neuron in nearest_neurons:
neuron_activation = neuron.process(question_embedding.flatten())
activations.append(np.mean(neuron_activation))
logger.info(f"Neuron activation: {neuron_activation}, Mean activation: {np.mean(neuron_activation)}")
if not activations:
logger.warning("No activations received from neurons.")
return "Unable to determine an answer due to lack of neuron activations."
mean_activation = np.mean(activations)
logger.info(f"Mean activation across neurons: {mean_activation}")
threshold = 0.5 # You can adjust this threshold
answer = "Yes" if mean_activation > threshold else "No"
return answer
except Exception as e:
logger.error(f"Error in answering question: {e}")
return "Unable to determine an answer due to an error."
def learn(self, question: str, correct_answer: str):
current_answer = self.answer_question(question)
reward = 1 if current_answer == correct_answer else -1
self.memory.append((question, correct_answer, reward))
def review_memory(self):
for question, correct_answer, reward in self.memory:
if reward == -1:
self.learn(question, correct_answer)
def save_hologram_to_file(self, filename: str = "nebula_hologram.npz"):
state_data = self.save_state()
# Convert PyTorch tensors to NumPy arrays before saving
for sector_id, encoded_state in state_data.items():
state_data[sector_id] = encoded_state.cpu().numpy()
np.savez_compressed(filename, **state_data)
logger.info(f"Hologram saved to {filename}")
def load_hologram_from_file(self, filename: str = "nebula_hologram.npz"):
state_data = dict(np.load(filename))
# Convert NumPy arrays back to PyTorch tensors and move to GPU
for sector_id, encoded_state in state_data.items():
state_data[sector_id] = torch.as_tensor(encoded_state, dtype=torch.complex64).to('cuda')
self.load_state(state_data)
logger.info(f"Hologram loaded from {filename}")
def learn(self, question: str, correct_answer: str):
"""
Adjusts the system's internal representation based on feedback.
Args:
question (str): The question that was asked.
correct_answer (str): The correct answer to the question.
"""
# In a fully implemented system, this method would adjust neuron weights,
# positions, or other parameters based on the correctness of the answer.
# For this example, we are simply storing the question, correct answer,
# and a placeholder reward in the memory.
current_answer = self.answer_question(question) # Get the system's current answer
if current_answer == correct_answer:
reward = 1 # Placeholder reward
else:
reward = -1 # Placeholder reward
self.memory.append((question, correct_answer, reward)) # Store learning data
def review_memory(self):
"""
Reviews past question-answer pairs and reinforces learning.
This method iterates through the system's memory and can be used to
reinforce learning from past mistakes or successes.
"""
# In a fully implemented system, this method would re-evaluate past
# questions and potentially adjust learning parameters based on the
# stored rewards or feedback.
for question, correct_answer, reward in self.memory:
if reward == -1: # If the system answered incorrectly previously
self.learn(question, correct_answer) # Attempt to learn from the mistake
@ray.remote(num_gpus=1)
class NebulaTrainer:
def __init__(self):
self.nebula = NebulaSystem()
self.reward_system = self.create_reward_system()
def create_reward_system(self):
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
total_weights = sum(neuron.quantum_neuron.weights.size
for sector in self.nebula.space.sectors.values()
for neuron in sector.neurons)
logger.info(f"Total weights for individuals: {total_weights}")
toolbox.register("attribute", np.random.rand)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attribute, n=total_weights)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", self.evaluate)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
return toolbox
@timeout(60) # 60 second timeout for evaluation
def evaluate(self, individual):
logger.info(f"Starting evaluation of individual with length {len(individual)}")
current_index = 0
for sector in self.nebula.space.sectors.values():
for neuron in sector.neurons:
weight_size = neuron.quantum_neuron.weights.size
if current_index + weight_size <= len(individual):
neuron.quantum_neuron.weights = np.array(individual[current_index:current_index + weight_size])
current_index += weight_size
else:
logger.error(f"Not enough weights in individual. Expected at least {current_index + weight_size}, but got {len(individual)}")
return (0.0,)
correct_answers = 0
total_questions = 0
for category, questions in solar_system_qa.items():
for qa in questions:
answer = self.nebula.answer_question(qa['question'])
if answer == qa['answer']:
correct_answers += 1
total_questions += 1
if total_questions == 0:
return (0.0,)
fitness = correct_answers / total_questions
logger.info(f"Individual evaluation complete. Fitness: {fitness}")
return (fitness,)
def train(self, data: Dict[str, List[Dict[str, str]]], generations: int = EPOCH, timeout: int = 900):
logger.info("Starting training process")
self.nebula.process_data(data)
toolbox = self.reward_system
total_weights = sum(neuron.quantum_neuron.weights.size
for sector in self.nebula.space.sectors.values()
for neuron in sector.neurons)
toolbox.unregister("individual")
toolbox.unregister("population")
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attribute, n=total_weights)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
logger.info("Creating initial population")
population = toolbox.population(n=25) # Further reduced population size
def timeout_handler(signum, frame):
raise TimeoutError("Training took too long")
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(timeout)
try:
logger.info("Starting genetic algorithm")
for gen in tqdm(range(generations), desc="Training Progress"):
logger.info(f"Generation {gen} started")
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
fits = []
for ind in offspring:
try:
fit = toolbox.evaluate(ind)
fits.append(fit)
except TimeoutError:
logger.warning("Evaluation timed out, assigning zero fitness")
fits.append((0.0,))
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
best_fit = tools.selBest(population, k=1)[0].fitness.values[0]
logger.info(f"Generation {gen}: Best fitness = {best_fit}")
if best_fit >= 0.95: # Early stopping condition
logger.info(f"Reached 95% accuracy. Stopping early at generation {gen}")
break
except TimeoutError:
logger.warning("Training timed out")
finally:
signal.alarm(0)
best_individual = tools.selBest(population, k=1)[0]
logger.info(f"Training completed. Best fitness: {best_individual.fitness.values[0]}")
return best_individual
def save_to_ply(filename: str, points: np.ndarray, colors: Optional[np.ndarray] = None):
"""
Saves point cloud data to a PLY file for 3D visualization.
Args:
filename (str): The name of the PLY file to save the data to.
points (np.ndarray): A NumPy array containing the 3D coordinates
of the points.
colors (Optional[np.ndarray]): A NumPy array containing the RGB
color values for each point.
"""
if points.size == 0:
logger.warning(f"No points to save. PLY file {filename} not created.")
return
cloud = trimesh.points.PointCloud(points, colors) # Create a point cloud object
cloud.export(filename) # Export the point cloud to a PLY file
logger.info(f"Point cloud saved to {filename}")
def visualize_nebula(nebula: NebulaSystem):
"""
Visualize the Nebula system using matplotlib.
Args:
nebula (NebulaSystem): The Nebula system to visualize.
"""
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
# Generate sample data for visualization
num_points = 10000
points = np.random.randn(num_points, 3)
luminosities = np.random.rand(num_points)
# Normalize luminosities for coloring
colors = plt.cm.viridis(luminosities / luminosities.max())
ax.scatter(points[:, 0], points[:, 1], points[:, 2], c=colors, s=20, alpha=0.6)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Nebula System Visualization (Estimated)')
plt.show()
def main():
logger.info("Starting Nebula system...")
try:
logger.info("Initializing Ray...")
ray.init(num_gpus=1)
logger.info("Ray initialized successfully.")
logger.info("Creating NebulaTrainer...")
trainer = NebulaTrainer.remote()
logger.info("NebulaTrainer created successfully.")
logger.info("Starting training...")
start_time = time.time()
result = ray.get(trainer.train.remote(solar_system_qa, generations=EPOCH))
end_time = time.time()
logger.info(f"Training complete in {end_time - start_time:.2f} seconds.")
logger.info("Creating local NebulaSystem...")
local_nebula = NebulaSystem()
logger.info("Local NebulaSystem created successfully.")
# Process the data to initialize neurons
local_nebula.process_data(solar_system_qa)
while True:
save_choice = input("Do you want to save the hologram to memory? (Yes/No): ").strip().lower()
if save_choice in ["yes", "y", "no", "n"]:
break
print("Invalid input. Please enter Yes or No.")
if save_choice in ["yes", "y"]:
while True:
format_choice = input("Select format: 1 for .NPZ, 2 for .PLY (3D): ").strip()
if format_choice in ["1", "2"]:
break
print("Invalid input. Please enter 1 or 2.")
if format_choice == "1":
local_nebula.save_hologram_to_file("nebula_hologram.npz")
elif format_choice == "2":
num_points = 100000
points = np.random.randn(num_points, 3)
luminosities = np.random.rand(num_points)
colors = (luminosities * 255).astype(np.uint8)
colors = np.column_stack((colors, colors, colors))
save_to_ply("nebula_hologram_3d.ply", points, colors)
logger.info("Saved PLY file for 3D visualization")
else:
logger.info("Hologram not saved.")
# Visualize the Nebula system
visualize_nebula(local_nebula)
while True:
print("\nChoose a category:")
for i, category in enumerate(solar_system_qa):
print(f"{i+1}. {category}")
category_choice = input("Enter category number (or type 'exit' to quit): ").strip().lower()
if category_choice == 'exit':
break
try:
category_index = int(category_choice) - 1
if category_index < 0 or category_index >= len(solar_system_qa):
raise ValueError("Category index out of range")
chosen_category = list(solar_system_qa.keys())[category_index]
while True:
print(f"\nQuestions about {chosen_category}:")
for i, q in enumerate(solar_system_qa[chosen_category]):
print(f"{i+1}. {q['question']}")
question_choice = input("Enter question number (or type 'back' to choose another category): ").strip().lower()
if question_choice == 'back':
break
try:
question_index = int(question_choice) - 1
if question_index < 0 or question_index >= len(solar_system_qa[chosen_category]):
print("Invalid question number. Please try again.")
continue
selected_question = solar_system_qa[chosen_category][question_index]
nebula_answer = local_nebula.answer_question(selected_question['question'])
print(f"\nNebula's answer: {nebula_answer}")
print(f"Correct answer: {selected_question['answer']}")
if nebula_answer == selected_question['answer']:
print("Nebula's answer is correct!")
elif nebula_answer in ["Unable to answer due to lack of initialized neurons.", "Unable to determine an answer due to lack of neuron activations.", "Unable to determine an answer due to an error."]:
print("Nebula is unable to answer this question.")
else:
print("Nebula's answer is incorrect.")
local_nebula.learn(selected_question['question'], selected_question['answer'])
global TRAIN_EPOCH
TRAIN_EPOCH += 1
if TRAIN_EPOCH % 10 == 0:
local_nebula.review_memory()
except ValueError:
print("Invalid input. Please enter a number or 'back'.")
except Exception as e:
logger.error(f"An unexpected error occurred: {e}")
print("An unexpected error occurred. Please try again.")
except ValueError as e:
logger.error(f"Invalid category number: {e}. Please try again.")
except Exception as e:
logger.error(f"An error occurred while processing the category: {e}. Please try again.")
visualize_nebula(local_nebula)
except Exception as e:
logger.error(f"An error occurred in the main function: {e}")
finally:
logger.info("Shutting down Ray...")
ray.shutdown()
logger.info("Ray shut down successfully.")
logger.info("Nebula system execution complete.")
if __name__ == "__main__":
main()
|