AhmedSSabir
commited on
Commit
•
96041d5
1
Parent(s):
df47ac7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Overview
|
3 |
+
<img align="right" width="300" height="280" src="LRCE_figure_1.png">
|
4 |
+
|
5 |
+
We enrich COCO-caption with **textual Visual Context** information. We use [ResNet152](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf), [CLIP](https://github.com/openai/CLIP) and [Faster R-CNN](https://github.com/tensorflow/models/tree/master/research/object_detection) to extract
|
6 |
+
object information for each COCO-caption image. We use three filter approaches to ensure quality of the dataset (1) Threshold: to filter out predictions where the object classifier is not confident enough, and (2) semantic alignment to with semantic similarity to remove duplicated object. (3) semantic relatedness score as soft-label: to grantee the visual context and caption have strong relation, we use [Sentence RoBERTa](https://www.sbert.net) -SBERT uses siamese network to derive meaningfully sentence embedding that can be compared via cosine similarity- to give a soft label via cosine similarity with **th**reshold to annotate the final label (if th > 0.2, 0.3, 0.4 then 1,0). Finally, to take advantage of the overlapping between the visual context and the caption, and to extract global information from each visual, we use BERT followed by a shallow CNN [(Kim, 2014)](https://arxiv.org/pdf/1408.5882.pdf). [colab](https://colab.research.google.com/drive/1N0JVa6y8FKGLLSpiG7hd_W75UYhHRe2j?usp=sharing)
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
## Dataset
|
11 |
+
|
12 |
+
### Sample
|
13 |
+
|
14 |
+
```
|
15 |
+
|---------------+--------------+---------------+---------------------------------------------------|
|
16 |
+
| VC1 | VC2 | VC3 | human annoated caption |
|
17 |
+
| ------------- | ----------- | ------------- | ------------------------------------------------- |
|
18 |
+
| cheeseburger | plate | hotdog | a plate with a hamburger fries and tomatoes |
|
19 |
+
| bakery | dining table | website | a table having tea and a cake on it |
|
20 |
+
| gown | groom | apron | its time to cut the cake at this couples wedding |
|
21 |
+
|---------------+--------------+---------------+---------------------------------------------------|
|
22 |
+
|
23 |
+
|
24 |
+
```
|
25 |
+
|
26 |
+
### Download
|
27 |
+
|
28 |
+
0. [Dowload Raw data with ID and Visual context](https://www.dropbox.com/s/xuov24on8477zg8/All_Caption_ID.csv?dl=0) -> original dataset with related ID caption [train2014](https://cocodataset.org/#download)
|
29 |
+
1. [Downlod Data with cosine score](https://www.dropbox.com/s/u1n2r2ign8v7gvh/visual_caption_cosine_score.zip?dl=0)-> soft cosine lable with **th** 0.2, 0.3, 0.4 and 0.5
|
30 |
+
2. [Dowload Overlaping visual with caption](https://www.dropbox.com/s/br8nhnlf4k2czo8/COCO_overlaping_dataset.txt?dl=0)-> Overlap visual context and the human annotated caption
|
31 |
+
3. [Download Dataset (tsv file)](https://www.dropbox.com/s/dh38xibtjpohbeg/train_all.zip?dl=0) 0.0-> raw data with hard lable without cosine similairty and with **th**reshold cosine sim degree of the relation beteween the visual and caption = 0.2, 0.3, 0.4
|
32 |
+
4. [Download Dataset GenderBias](https://www.dropbox.com/s/dh38xibtjpohbeg/train_all.zip?dl=0)-> man/woman replaced with person class label
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
For unspervied learning
|
37 |
+
|
38 |
+
1. [Download CC](https://www.dropbox.com/s/pc1uv2rf6nqdp57/CC_caption_40.txt.zip) -> Caption dataset from Conceptinal Caption (CC) 2M (2255927 captions)
|
39 |
+
2. [Download CC+wiki](https://www.dropbox.com/s/xuov24on8477zg8/All_Caption_ID.csv?dl=0) -> CC+1M-wiki 3M (3255928)
|
40 |
+
3. [Download CC+wiki+COCO](https://www.dropbox.com/s/k7oqwr9a1a0h8x1/CC_caption_40%2Bwiki%2BCOCO.txt.zip) -> CC+wiki+COCO-Caption 3.5M (366984)
|
41 |
+
4. [Download COCO-caption+wiki](https://www.dropbox.com/s/wc4k677wp24kzhh/COCO%2Bwiki.txt.zip) -> COCO-caption +wiki 1.4M (1413915)
|
42 |
+
5. [Download COCO-caption+wiki+CC+8Mwiki](https://www.dropbox.com/s/xhfx32sjy2z5bpa/11M_wiki_7M%2BCC%2BCOCO.txt.zip) -> COCO-caption+wiki+CC+8Mwiki 11M (11541667)
|