Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 2,472 Bytes
5c2c078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d6733
 
 
 
 
 
5c2c078
 
f3d6733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: userId
    dtype: int64
  - name: movieId
    dtype: int64
  - name: rating
    dtype: float64
  - name: timestamp
    dtype: int64
  splits:
  - name: train
    num_bytes: 3226752
    num_examples: 100836
  download_size: 1166644
  dataset_size: 3226752
license: other
language:
- en
pretty_name: movielens-user-ratings
size_categories:
- 100K<n<1M
---

# Movielens-user-ratings
This dataset contains a set of movie ratings from the MovieLens website, a movie recommendation service.

## Overview 
MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota.
The GroupLens Research has collected and made available rating data sets from the [MovieLens website](https://movielens.org). 
MovieLens 100K movie ratings contain 100,000 ratings(1-5)from 943 users on 1682 movies. Released 1998.

## Dataset Details
The dataset from Kaggle is named [MovieLens100](https://www.kaggle.com/datasets/abhikjha/movielens-100k). 
Contains different CSV files for Movies, Ratings, Links, and Tags. We used only the file "ratings.csv" in **movielens-user-ratings dataset**.

- Dataset Name: movielens-user-ratings
- Language:  English
- Total Size: 100,836 demonstrations

**Citation:**
```latex
@article{10.1145/2827872,
author = {Harper, F. Maxwell and Konstan, Joseph A.},
title = {The MovieLens Datasets: History and Context},
year = {2015},
issue_date = {January 2016},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {5},
number = {4},
issn = {2160-6455},
url = {https://doi.org/10.1145/2827872},
doi = {10.1145/2827872},
journal = {ACM Trans. Interact. Intell. Syst.},
month = dec,
articleno = {19},
numpages = {19},
keywords = {Datasets, recommendations, ratings, MovieLens}
}
```
## Contents

The dataset consists of a data frame with the following columns:

- **userId:** a unique identifier of the user who made the rating.
- **movieId:**  a unique identifier of the rated movie.
- **rating:** the score of the rating on a five-star scale.
- **timestamp:** the timestamp of the ratings.

## How to use

```python
from datasets import load_dataset

dataset = load_dataset("AiresPucrs/movielens-user-ratings", split='train')

```

## License

This dataset is licensed under the USAGE LICENSE - [Other](https://files.grouplens.org/datasets/movielens/ml-100k-README.txt).