File size: 6,980 Bytes
c71fb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import os
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from pydub import AudioSegment
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
import logging
import shutil
import srt

mtypes = {"cpu": "int8", "cuda": "float16"}

# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
    "-a", "--audio", help="name of the target audio file", required=True
)
parser.add_argument(
    "--no-stem",
    action="store_false",
    dest="stemming",
    default=True,
    help="Disables source separation. This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
    "--suppress_numerals",
    action="store_true",
    dest="suppress_numerals",
    default=False,
    help="Suppresses Numerical Digits. This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
    "--whisper-model",
    dest="model_name",
    default="medium.en",
    help="name of the Whisper model to use",
)
parser.add_argument(
    "--batch-size",
    type=int,
    dest="batch_size",
    default=8,
    help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
)
parser.add_argument(
    "--language",
    type=str,
    default=None,
    choices=whisper_langs,
    help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
    "--device",
    dest="device",
    default="cuda" if torch.cuda.is_available() else "cpu",
    help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()

if args.stemming:
    # Isolate vocals from the rest of the audio
    return_code = os.system(
        f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"'
    )
    if return_code != 0:
        logging.warning(
            "Source splitting failed, using original audio file. Use --no-stem argument to disable it."
        )
        vocal_target = args.audio
    else:
        vocal_target = os.path.join(
            "temp_outputs",
            "htdemucs",
            os.path.splitext(os.path.basename(args.audio))[0],
            "vocals.wav",
        )
else:
    vocal_target = args.audio

# Transcribe the audio file
if args.batch_size != 0:
    from transcription_helpers import transcribe_batched
    whisper_results, language = transcribe_batched(
        vocal_target,
        args.language,
        args.batch_size,
        args.model_name,
        mtypes[args.device],
        args.suppress_numerals,
        args.device,
    )
else:
    from transcription_helpers import transcribe
    whisper_results, language = transcribe(
        vocal_target,
        args.language,
        args.model_name,
        mtypes[args.device],
        args.suppress_numerals,
        args.device,
    )

if language in wav2vec2_langs:
    alignment_model, metadata = whisperx.load_align_model(
        language_code=language, device=args.device
    )
    result_aligned = whisperx.align(
        whisper_results, alignment_model, metadata, vocal_target, args.device
    )
    word_timestamps = filter_missing_timestamps(
        result_aligned["word_segments"],
        initial_timestamp=whisper_results[0].get("start"),
        final_timestamp=whisper_results[-1].get("end"),
    )
    # clear gpu vram
    del alignment_model
    torch.cuda.empty_cache()
else:
    assert (
        args.batch_size == 0  # TODO: add a better check for word timestamps existence
    ), (
        f"Unsupported language: {language}, use --batch_size to 0"
        " to generate word timestamps using whisper directly and fix this error."
    )
    word_timestamps = []
    for segment in whisper_results:
        for word in segment["words"]:
            word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})


# convert audio to mono for NeMo compatibility
sound = AudioSegment.from_file(vocal_target).set_channels(1)
ROOT = os.getcwd()
temp_path = os.path.join(ROOT, "temp_outputs")
os.makedirs(temp_path, exist_ok=True)
sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")

# Initialize NeMo MSDD diarization model
msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
msdd_model.diarize()
del msdd_model
torch.cuda.empty_cache()

# Reading timestamps <> Speaker Labels mapping
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
    lines = f.readlines()
    for line in lines:
        line_list = line.split(" ")
        s = int(float(line_list[5]) * 1000)
        e = s + int(float(line_list[8]) * 1000)
        speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])

wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)

# Create the autodiarization directory structure
autodiarization_dir = "autodiarization"
os.makedirs(autodiarization_dir, exist_ok=True)

# Get the base name of the audio file
base_name = os.path.splitext(os.path.basename(args.audio))[0]

# Create a subdirectory for the current audio file
audio_dir = os.path.join(autodiarization_dir, base_name)
os.makedirs(audio_dir, exist_ok=True)

# Create a dictionary to store speaker-specific metadata
speaker_metadata = {}

# Generate the SRT file
srt_file = f"{os.path.splitext(args.audio)[0]}.srt"
with open(srt_file, "w", encoding="utf-8") as f:
    write_srt(ssm, f)

# Read the generated SRT file
with open(srt_file, "r", encoding="utf-8") as f:
    srt_data = f.read()

# Parse the SRT data
srt_segments = list(srt.parse(srt_data))

# Process each segment in the SRT data
for segment in srt_segments:
    start_time = segment.start.total_seconds() * 1000
    end_time = segment.end.total_seconds() * 1000
    speaker_name, transcript = segment.content.split(": ", 1)

    # Extract the speaker ID from the speaker name
    speaker_id = int(speaker_name.split(" ")[-1])

    # Split the audio segment
    segment_audio = sound[start_time:end_time]
    segment_path = os.path.join(audio_dir, f"speaker_{speaker_id}", f"speaker_{speaker_id}_{segment.index:03d}.wav")
    os.makedirs(os.path.dirname(segment_path), exist_ok=True)
    segment_audio.export(segment_path, format="wav")

    # Store the metadata for each speaker
    if speaker_name not in speaker_metadata:
        speaker_metadata[speaker_name] = []
    speaker_metadata[speaker_name].append(f"speaker_{speaker_id}_{segment.index:03d}|{speaker_name}|{transcript}")

# Write the metadata.csv file for each speaker
for speaker_name, metadata in speaker_metadata.items():
    speaker_id = int(speaker_name.split(" ")[-1])
    speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
    with open(os.path.join(speaker_dir, "metadata.csv"), "w", encoding="utf-8") as f:
        f.write("\n".join(metadata))

# Clean up temporary files
cleanup(temp_path)