Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
Commit
·
134d7a3
0
Parent(s):
Update files from the datasets library (from 1.1.3)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.1.3
- .gitattributes +27 -0
- asnq.py +151 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
asnq.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Answer-Sentence Natural Questions (ASNQ)
|
16 |
+
|
17 |
+
ASNQ is a dataset for answer sentence selection derived from Google's
|
18 |
+
Natural Questions (NQ) dataset (Kwiatkowski et al. 2019). It converts
|
19 |
+
NQ's dataset into an AS2 (answer-sentence-selection) format.
|
20 |
+
|
21 |
+
The dataset details can be found in the paper at
|
22 |
+
https://arxiv.org/abs/1911.04118
|
23 |
+
|
24 |
+
The dataset can be downloaded at
|
25 |
+
https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar
|
26 |
+
"""
|
27 |
+
|
28 |
+
from __future__ import absolute_import, division, print_function
|
29 |
+
|
30 |
+
import csv
|
31 |
+
import os
|
32 |
+
|
33 |
+
import datasets
|
34 |
+
|
35 |
+
|
36 |
+
_CITATION = """\
|
37 |
+
@article{garg2019tanda,
|
38 |
+
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
|
39 |
+
author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},
|
40 |
+
year={2019},
|
41 |
+
eprint={1911.04118},
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
ASNQ is a dataset for answer sentence selection derived from
|
47 |
+
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
48 |
+
|
49 |
+
Each example contains a question, candidate sentence, label indicating whether or not
|
50 |
+
the sentence answers the question, and two additional features --
|
51 |
+
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
|
52 |
+
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
|
53 |
+
|
54 |
+
For more details please see
|
55 |
+
https://arxiv.org/pdf/1911.04118.pdf
|
56 |
+
|
57 |
+
and
|
58 |
+
|
59 |
+
https://research.google/pubs/pub47761/
|
60 |
+
"""
|
61 |
+
|
62 |
+
_URL = "https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar"
|
63 |
+
|
64 |
+
|
65 |
+
class ASNQ(datasets.GeneratorBasedBuilder):
|
66 |
+
"""ASNQ is a dataset for answer sentence selection derived
|
67 |
+
ASNQ is a dataset for answer sentence selection derived from
|
68 |
+
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
69 |
+
|
70 |
+
The dataset details can be found in the paper:
|
71 |
+
https://arxiv.org/abs/1911.04118
|
72 |
+
"""
|
73 |
+
|
74 |
+
VERSION = datasets.Version("1.0.0")
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
# This is the description that will appear on the datasets page.
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
# This defines the different columns of the dataset and their types
|
82 |
+
features=datasets.Features(
|
83 |
+
{
|
84 |
+
"question": datasets.Value("string"),
|
85 |
+
"sentence": datasets.Value("string"),
|
86 |
+
"label": datasets.ClassLabel(names=["neg", "pos"]),
|
87 |
+
"sentence_in_long_answer": datasets.Value("bool"),
|
88 |
+
"short_answer_in_sentence": datasets.Value("bool"),
|
89 |
+
}
|
90 |
+
),
|
91 |
+
# No default supervised_keys
|
92 |
+
supervised_keys=None,
|
93 |
+
# Homepage of the dataset for documentation
|
94 |
+
homepage="https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager):
|
99 |
+
"""Returns SplitGenerators."""
|
100 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
101 |
+
# download and extract URLs
|
102 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
103 |
+
data_dir = os.path.join(dl_dir, "data", "asnq")
|
104 |
+
return [
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.TRAIN,
|
107 |
+
# These kwargs will be passed to _generate_examples
|
108 |
+
gen_kwargs={
|
109 |
+
"filepath": os.path.join(data_dir, "train.tsv"),
|
110 |
+
"split": "train",
|
111 |
+
},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.VALIDATION,
|
115 |
+
# These kwargs will be passed to _generate_examples
|
116 |
+
gen_kwargs={
|
117 |
+
"filepath": os.path.join(data_dir, "dev.tsv"),
|
118 |
+
"split": "dev",
|
119 |
+
},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath, split):
|
124 |
+
"""Yields examples.
|
125 |
+
|
126 |
+
Original dataset contains labels '1', '2', '3' and '4', with labels
|
127 |
+
'1', '2' and '3' considered negative (sentence does not answer the question),
|
128 |
+
and label '4' considered positive (sentence does answer the question).
|
129 |
+
We map these labels to two classes, returning the other properties as additional
|
130 |
+
features."""
|
131 |
+
|
132 |
+
# Mapping of dataset's original labels to a tuple of
|
133 |
+
# (label, sentence_in_long_answer, short_answer_in_sentence)
|
134 |
+
label_map = {
|
135 |
+
"1": ("neg", False, False),
|
136 |
+
"2": ("neg", False, True),
|
137 |
+
"3": ("neg", True, False),
|
138 |
+
"4": ("pos", True, True),
|
139 |
+
}
|
140 |
+
with open(filepath, encoding="utf-8") as tsvfile:
|
141 |
+
tsvreader = csv.reader(tsvfile, delimiter="\t")
|
142 |
+
for id_, row in enumerate(tsvreader):
|
143 |
+
question, sentence, orig_label = row
|
144 |
+
label, sentence_in_long_answer, short_answer_in_sentence = label_map[orig_label]
|
145 |
+
yield id_, {
|
146 |
+
"question": question,
|
147 |
+
"sentence": sentence,
|
148 |
+
"label": label,
|
149 |
+
"sentence_in_long_answer": sentence_in_long_answer,
|
150 |
+
"short_answer_in_sentence": short_answer_in_sentence,
|
151 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "ASNQ is a dataset for answer sentence selection derived from\nGoogle's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).\n\nEach example contains a question, candidate sentence, label indicating whether or not\nthe sentence answers the question, and two additional features -- \nsentence_in_long_answer and short_answer_in_sentence indicating whether ot not the \ncandidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.\n\nFor more details please see \nhttps://arxiv.org/pdf/1911.04118.pdf\n\nand \n\nhttps://research.google/pubs/pub47761/\n", "citation": "@article{garg2019tanda,\n title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},\n author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},\n year={2019},\n eprint={1911.04118},\n}\n", "homepage": "https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}, "sentence_in_long_answer": {"dtype": "bool", "id": null, "_type": "Value"}, "short_answer_in_sentence": {"dtype": "bool", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "asnq", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3656881376, "num_examples": 20377568, "dataset_name": "asnq"}, "validation": {"name": "validation", "num_bytes": 168005155, "num_examples": 930062, "dataset_name": "asnq"}}, "download_checksums": {"https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar": {"num_bytes": 3563857920, "checksum": "4211d3e507e7cfa345a9eea3c5222b7d79fd963cf27407555c5558c37344ddf1"}}, "download_size": 3563857920, "post_processing_size": null, "dataset_size": 3824886531, "size_in_bytes": 7388744451}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89aaa94ab61bc915801e4e404a60de81cf58d579f59b40aae56cfa5d70f3b9a3
|
3 |
+
size 2926
|