Datasets:

Modalities:
Text
Libraries:
Datasets
License:
File size: 7,470 Bytes
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788cd2
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788cd2
 
89922d6
4788cd2
89922d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
annotations_creators:
- expert-generated
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- ar
- de
- ja
- hi
- pt
- en
- es
- it
- fr
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: mintaka
pretty_name: Mintaka
language_bcp47:
- ar-SA
- de-DE
- ja-JP
- hi-HI
- pt-PT
- en-EN
- es-ES
- it-IT
- fr-FR
---

# Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Homepage:** https://github.com/amazon-science/mintaka
- **Repository:** https://github.com/amazon-science/mintaka
- **Paper:** https://aclanthology.org/2022.coling-1.138/
- **Point of Contact:** [GitHub](https://github.com/amazon-science/mintaka)

### Dataset Summary

Mintaka is a complex, natural, and multilingual question answering (QA) dataset composed of 20,000 question-answer pairs elicited from MTurk workers and annotated with Wikidata question and answer entities. Full details on the Mintaka dataset can be found in our paper: https://aclanthology.org/2022.coling-1.138/

To build Mintaka, we explicitly collected questions in 8 complexity types, as well as generic questions:

- Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
- Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
- Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
- Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
- Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
- Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
- Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
- Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
- Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
- We collected questions about 8 categories: Movies, Music, Sports, Books, Geography, Politics, Video Games, and History

Mintaka is one of the first large-scale complex, natural, and multilingual datasets that can be used for end-to-end question-answering models.

### Supported Tasks and Leaderboards

The dataset can be used to train a model for question answering.
To ensure comparability, please refer to our evaluation script here: https://github.com/amazon-science/mintaka#evaluation

### Languages

All questions were written in English and translated into 8 additional languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish.

## Dataset Structure

### Data Instances

An example of 'train' looks as follows.

```json
{
  "id": "a9011ddf",
  "lang": "en",
  "question": "What is the seventh tallest mountain in North America?",
  "answerText": "Mount Lucania",
  "category": "geography",
  "complexityType": "ordinal",
  "questionEntity":
  [
      {
          "name": "Q49",
          "entityType": "entity",
          "label": "North America",
          "mention": "North America",
          "span": [40, 53]
      },
      {
          "name": 7,
          "entityType": "ordinal",
          "mention": "seventh",
          "span": [12, 19]
      }
  ],
  "answerEntity":
  [
      {
          "name": "Q1153188",
          "label": "Mount Lucania",
      }
  ],
}
```

### Data Fields

The data fields are the same among all splits.

`id`: a unique ID for the given sample.

`lang`: the language of the question. 

`question`: the original question elicited in the corresponding language.

`answerText`: the original answer text elicited in English.

`category`: the category of the question. Options are: geography, movies, history, books, politics, music, videogames, or sports

`complexityType`: the complexity type of the question. Options are: ordinal, intersection, count, superlative, yesno comparative, multihop, difference, or generic

`questionEntity`:  a list of annotated question entities identified by crowd workers.
```
{
     "name": The Wikidata Q-code or numerical value of the entity
     "entityType": The type of the entity. Options are:
             entity, cardinal, ordinal, date, time, percent, quantity, or money
     "label": The label of the Wikidata Q-code
     "mention": The entity as it appears in the English question text. Will be empty for non-English samples.
     "span": The start and end characters of the mention in the English question text. Will be empty for non-English samples.
}
```
`answerEntity`:  a list of annotated answer entities identified by crowd workers.
```
{
     "name": The Wikidata Q-code or numerical value of the entity
     "label": The label of the Wikidata Q-code
}
```

### Data Splits

For each language, we split into train (14,000 samples), dev (2,000 samples), and test (4,000 samples) sets.

### Personal and Sensitive Information

The corpora is free of personal or sensitive information.

## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

Amazon Alexa AI.

### Licensing Information

This project is licensed under the CC-BY-4.0 License.

### Citation Information

Please cite the following papers when using this dataset.

```latex
@inproceedings{sen-etal-2022-mintaka,
    title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
    author = "Sen, Priyanka  and
      Aji, Alham Fikri  and
      Saffari, Amir",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.138",
    pages = "1604--1619"
}
```

### Contributions

Thanks to [@afaji](https://github.com/afaji) for adding this dataset.