Datasets:

Modalities:
Text
Libraries:
Datasets
License:
parquet-converter commited on
Commit
9827006
1 Parent(s): 4788cd2

Update parquet files

Browse files
README.md DELETED
@@ -1,223 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - found
6
- license:
7
- - cc-by-4.0
8
- multilinguality:
9
- - ar
10
- - de
11
- - ja
12
- - hi
13
- - pt
14
- - en
15
- - es
16
- - it
17
- - fr
18
- size_categories:
19
- - 100K<n<1M
20
- source_datasets:
21
- - original
22
- task_categories:
23
- - question-answering
24
- task_ids:
25
- - open-domain-qa
26
- paperswithcode_id: mintaka
27
- pretty_name: Mintaka
28
- language_bcp47:
29
- - ar-SA
30
- - de-DE
31
- - ja-JP
32
- - hi-HI
33
- - pt-PT
34
- - en-EN
35
- - es-ES
36
- - it-IT
37
- - fr-FR
38
- ---
39
-
40
- # Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering
41
-
42
- ## Table of Contents
43
- - [Dataset Description](#dataset-description)
44
- - [Dataset Summary](#dataset-summary)
45
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
46
- - [Languages](#languages)
47
- - [Dataset Structure](#dataset-structure)
48
- - [Data Instances](#data-instances)
49
- - [Data Fields](#data-fields)
50
- - [Data Splits](#data-splits)
51
- - [Dataset Creation](#dataset-creation)
52
- - [Curation Rationale](#curation-rationale)
53
- - [Source Data](#source-data)
54
- - [Annotations](#annotations)
55
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
56
- - [Considerations for Using the Data](#considerations-for-using-the-data)
57
- - [Social Impact of Dataset](#social-impact-of-dataset)
58
- - [Discussion of Biases](#discussion-of-biases)
59
- - [Other Known Limitations](#other-known-limitations)
60
- - [Additional Information](#additional-information)
61
- - [Dataset Curators](#dataset-curators)
62
- - [Licensing Information](#licensing-information)
63
- - [Citation Information](#citation-information)
64
- - [Contributions](#contributions)
65
-
66
- ## Dataset Description
67
- - **Homepage:** https://github.com/amazon-science/mintaka
68
- - **Repository:** https://github.com/amazon-science/mintaka
69
- - **Paper:** https://aclanthology.org/2022.coling-1.138/
70
- - **Point of Contact:** [GitHub](https://github.com/amazon-science/mintaka)
71
-
72
- ### Dataset Summary
73
-
74
- Mintaka is a complex, natural, and multilingual question answering (QA) dataset composed of 20,000 question-answer pairs elicited from MTurk workers and annotated with Wikidata question and answer entities. Full details on the Mintaka dataset can be found in our paper: https://aclanthology.org/2022.coling-1.138/
75
-
76
- To build Mintaka, we explicitly collected questions in 8 complexity types, as well as generic questions:
77
-
78
- - Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
79
- - Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
80
- - Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
81
- - Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
82
- - Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
83
- - Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
84
- - Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
85
- - Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
86
- - Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
87
- - We collected questions about 8 categories: Movies, Music, Sports, Books, Geography, Politics, Video Games, and History
88
-
89
- Mintaka is one of the first large-scale complex, natural, and multilingual datasets that can be used for end-to-end question-answering models.
90
-
91
- ### Supported Tasks and Leaderboards
92
-
93
- The dataset can be used to train a model for question answering.
94
- To ensure comparability, please refer to our evaluation script here: https://github.com/amazon-science/mintaka#evaluation
95
-
96
- ### Languages
97
-
98
- All questions were written in English and translated into 8 additional languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish.
99
-
100
- ## Dataset Structure
101
-
102
- ### Data Instances
103
-
104
- An example of 'train' looks as follows.
105
-
106
- ```json
107
- {
108
- "id": "a9011ddf",
109
- "lang": "en",
110
- "question": "What is the seventh tallest mountain in North America?",
111
- "answerText": "Mount Lucania",
112
- "category": "geography",
113
- "complexityType": "ordinal",
114
- "questionEntity":
115
- [
116
- {
117
- "name": "Q49",
118
- "entityType": "entity",
119
- "label": "North America",
120
- "mention": "North America",
121
- "span": [40, 53]
122
- },
123
- {
124
- "name": 7,
125
- "entityType": "ordinal",
126
- "mention": "seventh",
127
- "span": [12, 19]
128
- }
129
- ],
130
- "answerEntity":
131
- [
132
- {
133
- "name": "Q1153188",
134
- "label": "Mount Lucania",
135
- }
136
- ],
137
- }
138
- ```
139
-
140
- ### Data Fields
141
-
142
- The data fields are the same among all splits.
143
-
144
- `id`: a unique ID for the given sample.
145
-
146
- `lang`: the language of the question.
147
-
148
- `question`: the original question elicited in the corresponding language.
149
-
150
- `answerText`: the original answer text elicited in English.
151
-
152
- `category`: the category of the question. Options are: geography, movies, history, books, politics, music, videogames, or sports
153
-
154
- `complexityType`: the complexity type of the question. Options are: ordinal, intersection, count, superlative, yesno comparative, multihop, difference, or generic
155
-
156
- `questionEntity`: a list of annotated question entities identified by crowd workers.
157
- ```
158
- {
159
- "name": The Wikidata Q-code or numerical value of the entity
160
- "entityType": The type of the entity. Options are:
161
- entity, cardinal, ordinal, date, time, percent, quantity, or money
162
- "label": The label of the Wikidata Q-code
163
- "mention": The entity as it appears in the English question text. Will be empty for non-English samples.
164
- "span": The start and end characters of the mention in the English question text. Will be empty for non-English samples.
165
- }
166
- ```
167
- `answerEntity`: a list of annotated answer entities identified by crowd workers.
168
- ```
169
- {
170
- "name": The Wikidata Q-code or numerical value of the entity
171
- "label": The label of the Wikidata Q-code
172
- }
173
- ```
174
-
175
- ### Data Splits
176
-
177
- For each language, we split into train (14,000 samples), dev (2,000 samples), and test (4,000 samples) sets.
178
-
179
- ### Personal and Sensitive Information
180
-
181
- The corpora is free of personal or sensitive information.
182
-
183
- ## Considerations for Using the Data
184
- ### Social Impact of Dataset
185
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
186
- ### Discussion of Biases
187
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
188
- ### Other Known Limitations
189
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
190
-
191
- ## Additional Information
192
-
193
- ### Dataset Curators
194
-
195
- Amazon Alexa AI.
196
-
197
- ### Licensing Information
198
-
199
- This project is licensed under the CC-BY-4.0 License.
200
-
201
- ### Citation Information
202
-
203
- Please cite the following papers when using this dataset.
204
-
205
- ```latex
206
- @inproceedings{sen-etal-2022-mintaka,
207
- title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
208
- author = "Sen, Priyanka and
209
- Aji, Alham Fikri and
210
- Saffari, Amir",
211
- booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
212
- month = oct,
213
- year = "2022",
214
- address = "Gyeongju, Republic of Korea",
215
- publisher = "International Committee on Computational Linguistics",
216
- url = "https://aclanthology.org/2022.coling-1.138",
217
- pages = "1604--1619"
218
- }
219
- ```
220
-
221
- ### Contributions
222
-
223
- Thanks to [@afaji](https://github.com/afaji) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e42219df7dc3869351f1d8d8900cdc2ddf298dd48e835a3b53daeb87294a766
3
+ size 3861031
all/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b3bc26e148ed2ea558dc954c14961b262b4e65e81377b20c4a94df52ddcfa8b
3
+ size 12100214
all/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b0f5c8b2ba946a6134b88e1723574401496b6ef50887ee3b4769592fe50326e
3
+ size 2054319
ar/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a265538c304ffafe5b0f78e908c8d477580205754c4f3dee80307fa2171f0e1
3
+ size 448670
ar/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd5b7823dd8bb16c8023701a5c2d09d9d3a77a76ba003941b8db6cc2c8368dc
3
+ size 1410252
ar/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f013b2b6da227d022573dbf473c4c174201979c8b505cb9b185a999407ec8493
3
+ size 238698
de/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e865cfa88fdcf7595ef0f5dad8bad87439ebcb0cf54090aa58c2f03e2369021
3
+ size 413874
de/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4f338cd0dc205e1e31366fea8dfdaf4125f0195629d1c6db39245c66bf50601
3
+ size 1284654
de/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26d1dd4f1e5752ddb1e781b09a4fa3720a958bfc6ecbff0438eaa2980804fdbd
3
+ size 221906
en/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10dce9f86acd5721fd9a7a0dd380141d79d894a42ba7740f8870c8452da4bd79
3
+ size 467742
en/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbefb3b1ae8b52587aa95eecf13f9b40e11fa9cd7402139a2aeb4867809641c1
3
+ size 1452077
en/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0611764bd2c2e1e50a2e2be7a00c02a99d3fcb583cc694604373d0a451f29e7a
3
+ size 251677
es/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01714f401ee1889ceaa9a9a0931a992a550a1462489990f57580c4bbacbf2b68
3
+ size 412158
es/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:130662a512af67e7ff7ceb511cee5af725e41184909d8f3ccca65ab55a7ba392
3
+ size 1277762
es/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a31a0f11eb5134747c2932aa12082aed2ae9ea49337150eac2b8abe574676849
3
+ size 221326
fr/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e5290b33d063e394c1bd50119748517f2e048de134d9108b2b1a5bc8fb8e98
3
+ size 421206
fr/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91152ddf5ac0f73267f2b946afb40a8cb248c003cea0fe1e209b67456c7e08e4
3
+ size 1305451
fr/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:467d8679551116fb6e5a459966fdb25edee52882e315c64a3df0e4141421070a
3
+ size 225029
hi/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:532e9281293ea89d727944e7b075bceba9ae24deec6aa82cdf0b2b6c7bf4dad5
3
+ size 466343
hi/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e0c0eb2c9d844b352d2ba18f0d1b79f0a2a8bd7727cc036cafc606977768f68
3
+ size 1486575
hi/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dcb68b2d6193841f863cbf94a6bdcf50b299537f56d6ada7b27ddeddb1f9b90
3
+ size 250169
it/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7bfea803acd52072f45f6573f8ee8620c77923806ef1c68cf40b90d0f3b8783
3
+ size 411287
it/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22fff2e18fe646352f77460fdfb866fe4247d2d9b658597b43629570b4619aad
3
+ size 1273054
it/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72557b764c83e73f20be9c3b5265f5203eee768e653468dc50ea62989a3c05a
3
+ size 219676
ja/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd907b0e6da4f2363542bf3be0952923f570f653c8f4cbce1c7dd938f0778eb9
3
+ size 441539
ja/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b332063e2ddf179b3f42360686a8ec8f98563ca1ebe11ad4c342ee1cbe5fe0aa
3
+ size 1379138
ja/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37cdeb95a65a188c661c9bc9dfec627d1217d535ae59876ed65cbcdb7238c23c
3
+ size 235932
mintaka.py DELETED
@@ -1,177 +0,0 @@
1
- # coding=utf-8
2
-
3
- """Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
4
-
5
- import json
6
- import datasets
7
-
8
- logger = datasets.logging.get_logger(__name__)
9
-
10
- _DESCRIPTION = """\
11
- Mintaka is a complex, natural, and multilingual dataset designed for experimenting with end-to-end
12
- question-answering models. Mintaka is composed of 20,000 question-answer pairs collected in English,
13
- annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian,
14
- Japanese, Portuguese, and Spanish for a total of 180,000 samples.
15
- Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions,
16
- which were naturally elicited from crowd workers.
17
- """
18
-
19
- _CITATION = """\
20
- @inproceedings{sen-etal-2022-mintaka,
21
- title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
22
- author = "Sen, Priyanka and Aji, Alham Fikri and Saffari, Amir",
23
- booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
24
- month = oct,
25
- year = "2022",
26
- address = "Gyeongju, Republic of Korea",
27
- publisher = "International Committee on Computational Linguistics",
28
- url = "https://aclanthology.org/2022.coling-1.138",
29
- pages = "1604--1619"
30
- }
31
- """
32
-
33
- _LICENSE = """\
34
- Copyright Amazon.com Inc. or its affiliates.
35
- Attribution 4.0 International
36
- """
37
-
38
- _TRAIN_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_train.json"
39
- _DEV_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_dev.json"
40
- _TEST_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_test.json"
41
-
42
-
43
- _LANGUAGES = ['en', 'ar', 'de', 'ja', 'hi', 'pt', 'es', 'it', 'fr']
44
-
45
- _ALL = "all"
46
-
47
- class Mintaka(datasets.GeneratorBasedBuilder):
48
- """Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
49
-
50
- BUILDER_CONFIGS = [
51
- datasets.BuilderConfig(
52
- name = name,
53
- version = datasets.Version("1.0.0"),
54
- description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering for {name}",
55
- ) for name in _LANGUAGES
56
- ]
57
-
58
- BUILDER_CONFIGS.append(datasets.BuilderConfig(
59
- name = _ALL,
60
- version = datasets.Version("1.0.0"),
61
- description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
62
- ))
63
-
64
- DEFAULT_CONFIG_NAME = 'en'
65
-
66
- def _info(self):
67
- return datasets.DatasetInfo(
68
- description=_DESCRIPTION,
69
- features=datasets.Features(
70
- {
71
- "id": datasets.Value("string"),
72
- "lang": datasets.Value("string"),
73
- "question": datasets.Value("string"),
74
- "answerText": datasets.Value("string"),
75
- "category": datasets.Value("string"),
76
- "complexityType": datasets.Value("string"),
77
- "questionEntity": [{
78
- "name": datasets.Value("string"),
79
- "entityType": datasets.Value("string"),
80
- "label": datasets.Value("string"),
81
- "mention": datasets.Value("string"),
82
- "span": [datasets.Value("int32")],
83
- }],
84
- "answerEntity": [{
85
- "name": datasets.Value("string"),
86
- "label": datasets.Value("string"),
87
- }]
88
- },
89
- ),
90
- supervised_keys=None,
91
- citation=_CITATION,
92
- license=_LICENSE,
93
- )
94
-
95
- def _split_generators(self, dl_manager):
96
- return [
97
- datasets.SplitGenerator(
98
- name=datasets.Split.TRAIN,
99
- gen_kwargs={
100
- "file": dl_manager.download_and_extract(_TRAIN_URL),
101
- "lang": self.config.name,
102
- }
103
- ),
104
- datasets.SplitGenerator(
105
- name=datasets.Split.VALIDATION,
106
- gen_kwargs={
107
- "file": dl_manager.download_and_extract(_DEV_URL),
108
- "lang": self.config.name,
109
- }
110
- ),
111
- datasets.SplitGenerator(
112
- name=datasets.Split.TEST,
113
- gen_kwargs={
114
- "file": dl_manager.download_and_extract(_TEST_URL),
115
- "lang": self.config.name,
116
- }
117
- ),
118
- ]
119
-
120
- def _generate_examples(self, file, lang):
121
- if lang == _ALL:
122
- langs = _LANGUAGES
123
- else:
124
- langs = [lang]
125
-
126
- key_ = 0
127
-
128
- logger.info("⏳ Generating examples from = %s", ", ".join(lang))
129
-
130
- with open(file, encoding='utf-8') as json_file:
131
- data = json.load(json_file)
132
- for lang in langs:
133
- for sample in data:
134
- questionEntity = [
135
- {
136
- "name": str(qe["name"]),
137
- "entityType": qe["entityType"],
138
- "label": qe["label"] if "label" in qe else "",
139
- # span only applies for English question
140
- "mention": qe["mention"] if lang == "en" else None,
141
- "span": qe["span"] if lang == "en" else [],
142
- } for qe in sample["questionEntity"]
143
- ]
144
-
145
- answers = []
146
- if sample['answer']["answerType"] == "entity" and sample['answer']['answer'] is not None:
147
- answers = sample['answer']['answer']
148
- elif sample['answer']["answerType"] == "numerical" and "supportingEnt" in sample["answer"]:
149
- answers = sample['answer']['supportingEnt']
150
-
151
- # helper to get language for the corresponding language
152
- def get_label(labels, lang):
153
- if lang in labels:
154
- return labels[lang]
155
- if 'en' in labels:
156
- return labels['en']
157
- return None
158
-
159
- answerEntity = [
160
- {
161
- "name": str(ae["name"]),
162
- "label": get_label(ae["label"], lang),
163
- } for ae in answers
164
- ]
165
-
166
- yield key_, {
167
- "id": sample["id"],
168
- "lang": lang,
169
- "question": sample["question"] if lang == 'en' else sample['translations'][lang],
170
- "answerText": sample["answer"]["mention"],
171
- "category": sample["category"],
172
- "complexityType": sample["complexityType"],
173
- "questionEntity": questionEntity,
174
- "answerEntity": answerEntity,
175
- }
176
-
177
- key_ += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pt/mintaka-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20d27fd4d97b44ee9ef8131915fe147807f371a6db138e9a4d7185c643ac34b
3
+ size 403900
pt/mintaka-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0934012202bdff4ea6f9c85d02bb0db3a7d79f72bd00e80edd4cf430c5dd993
3
+ size 1252021
pt/mintaka-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f586c25db99fb968f44d182fcc2348db4f5098b8e38d1f3de1a5ec26f5e46e4
3
+ size 217004
test_mintaka.py DELETED
@@ -1,16 +0,0 @@
1
- from datasets import load_dataset
2
-
3
- source = "AmazonScience/mintaka"
4
-
5
- #dataset = load_dataset(source, "all", download_mode="force_redownload")
6
- dataset = load_dataset(source, "all")
7
-
8
- print(dataset)
9
- print(dataset["train"][0])
10
- print(dataset["train"][0:10]['question'])
11
-
12
-
13
- dataset = load_dataset(source, "en")
14
- dataset = load_dataset(source, "ar")
15
-
16
-