import pandas as pd import numpy as np from transformers import EsmModel, AutoTokenizer import torch from scipy.spatial.distance import pdist, squareform from gudhi import RipsComplex from gudhi.representations.vector_methods import Landscape from sklearn.cluster import DBSCAN # import matplotlib.pyplot as plt from tqdm import tqdm # Define a helper function for hidden states def get_hidden_states(sequence, tokenizer, model, layer): model.config.output_hidden_states = True encoded_input = tokenizer([sequence], return_tensors='pt', padding=True, truncation=True, max_length=1024) with torch.no_grad(): model_output = model(**encoded_input) hidden_states = model_output.hidden_states specific_hidden_states = hidden_states[layer][0] return specific_hidden_states.numpy() # Define a helper function for Euclidean distance matrix def compute_euclidean_distance_matrix(hidden_states): euclidean_distances = pdist(hidden_states, metric='euclidean') euclidean_distance_matrix = squareform(euclidean_distances) return euclidean_distance_matrix # Define a helper function for persistent homology def compute_persistent_homology(distance_matrix, max_dimension=0): max_edge_length = np.max(distance_matrix) rips_complex = RipsComplex(distance_matrix=distance_matrix, max_edge_length=max_edge_length) st = rips_complex.create_simplex_tree(max_dimension=max_dimension) st.persistence() persistence_pairs = np.array([[p[1][0], p[1][1]] for p in st.persistence() if p[0] == 0 and p[1][1] < np.inf]) # Filter out infinite death times return st, persistence_pairs # Define a helper function for persistent homology def compute_persistent_homology2(distance_matrix, max_dimension=0): max_edge_length = np.max(distance_matrix) rips_complex = RipsComplex(distance_matrix=distance_matrix, max_edge_length=max_edge_length) st = rips_complex.create_simplex_tree(max_dimension=max_dimension) st.persistence() return st, st.persistence() # Define a helper function for Landscape transformations with tqdm #def compute_landscapes(persistence_diagrams, num_landscapes=5, resolution=10000): # landscape_transformer = Landscape(num_landscapes=num_landscapes, resolution=resolution) # landscapes = landscape_transformer.fit_transform([d for d in persistence_diagrams if len(d) > 0]) # Filter out empty diagrams # return landscapes def compute_landscapes(persistence_diagrams, num_landscapes=5, resolution=10000): landscape_transformer = Landscape(num_landscapes=num_landscapes, resolution=resolution) landscapes = [] for diagram in tqdm(persistence_diagrams, desc="Computing Landscapes"): if len(diagram) > 0: landscape = landscape_transformer.fit_transform([diagram])[0] landscapes.append(landscape) return landscapes # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D") model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D") # Define layer to be used layer = model.config.num_hidden_layers - 1 # Load the TSV file file_path = 'clustering_and_evoprotgrad/filtered_protein_interaction_pairs.tsv' protein_pairs_df = pd.read_csv(file_path, sep='\t') # Only process the first 1000 proteins protein_pairs_df = protein_pairs_df.head(10000) # Extract concatenated sequences concatenated_sequences = protein_pairs_df['Protein1'] + protein_pairs_df['Protein2'] # Initialize list to store persistent diagrams persistent_diagrams = [] # Loop over concatenated sequences to compute their persistent diagrams for sequence in tqdm(concatenated_sequences, desc="Computing Persistence Diagrams"): hidden_states_matrix = get_hidden_states(sequence, tokenizer, model, layer) distance_matrix = compute_euclidean_distance_matrix(hidden_states_matrix) _, persistence_diagram = compute_persistent_homology(distance_matrix) persistent_diagrams.append(persistence_diagram) # Compute landscapes landscapes = compute_landscapes(persistent_diagrams) # Compute the L2 distances between landscapes with tqdm(total=len(landscapes)*(len(landscapes)-1)//2, desc="Computing Pairwise L2 Distances") as pbar: l2_distances = np.zeros((len(landscapes), len(landscapes))) for i in range(len(landscapes)): for j in range(i+1, len(landscapes)): l2_distances[i, j] = l2_distances[j, i] = np.linalg.norm(landscapes[i] - landscapes[j]) pbar.update(1) # Compute the second-level persistent homology using the L2 distance matrix with tqdm(total=1, desc="Computing Second-Level Persistent Homology") as pbar: st_2, persistence_2 = compute_persistent_homology2(l2_distances) pbar.update(1) # Function to calculate the epsilon for DBSCAN def calculate_epsilon(persistence_diagrams, threshold_percentage, max_eps=np.inf): lifetimes = [p[1][1] - p[1][0] for p in persistence_diagrams if p[0] == 0] lifetimes.sort() threshold_index = int(threshold_percentage * len(lifetimes)) epsilon = lifetimes[threshold_index] # Ensure epsilon is within a reasonable range epsilon = min(epsilon, max_eps) return epsilon # Calculate epsilon with a maximum threshold threshold_percentage = 0.35 # 50% max_epsilon = 5000.0 # Example maximum threshold epsilon = calculate_epsilon(persistence_2, threshold_percentage, max_eps=max_epsilon) # Perform DBSCAN clustering with tqdm(total=1, desc="Performing DBSCAN Clustering") as pbar: dbscan = DBSCAN(metric="precomputed", eps=epsilon, min_samples=1) dbscan.fit(l2_distances) # Use L2 distances here labels = dbscan.labels_ pbar.update(1) # Add the cluster labels to the DataFrame protein_pairs_df['Cluster'] = labels # Save the DataFrame with cluster information output_file_path = 'clustering_and_evoprotgrad/clustered_protein_pair_landscapes_l2_dist_100K.tsv' protein_pairs_df.to_csv(output_file_path, sep='\t', index=False) print(f"Clustered data saved to: {output_file_path}")