Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
Georgian
Size:
10K - 100K
File size: 2,056 Bytes
e9cbbe3 e9dbced e34b638 e9cbbe3 7098a21 d8e92fd 7098a21 e9cbbe3 1f52108 7098a21 e9cbbe3 a7e63c0 7098a21 a891ed9 e34b638 7098a21 e9cbbe3 e34a884 a6b9e4b fc48a92 e34a884 e9cbbe3 7098a21 e9cbbe3 7098a21 e9cbbe3 7098a21 e9cbbe3 7098a21 e9cbbe3 ff4c5cb a6b9e4b e9cbbe3 5a578fe 30be7d8 e9cbbe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import datasets
from datasets.tasks import ImageClassification
# _NAMES = ['ა', 'ბ', 'გ', 'დ', 'ე', 'ვ', 'ზ', 'თ', 'ი', 'კ', 'ლ', 'მ', 'ნ', 'ო', 'პ', 'ჟ', 'რ', 'ს', 'ტ', 'უ', 'ფ', 'ქ', 'ღ', 'ყ', 'შ', 'ჩ', 'ც', 'ძ', 'წ', 'ჭ', 'ხ', 'ჯ', 'ჰ']
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Georgian language alphabet dataset},
author={Ana Chikashua},
year={2023}
}
"""
_DESCRIPTION = """
Georgian language handwriting dataset!
"""
_URL = "https://huggingface.co/datasets/AnaChikashua/handwriting/resolve/main/handwriting_dataset.zip"
class HandwritingData(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
features=datasets.Features(
{
"label": datasets.features.ClassLabel(),
"image": datasets.Image()
}
),
supervised_keys=("image", "label"),
homepage="https://huggingface.co/datasets/AnaChikashua/alphabet",
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
path = dl_manager.dowload(_URL)
image_iters = dl_manager.iter_archive(path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"images": image_iters}
),
]
def _generate_examples(self, images):
"""This function returns the examples in the raw (text) form."""
# Iterate through images
for idx, filepath, image in enumerate(images):
# extract the text from the filename
logger.error(filepath)
text = [c for c in str(filepath) if not 0 <= ord(c) <= 127][0]
yield idx, {
"label": str(idx)+'txt',
"image": image
}
|